The BiPAP Vision Ventilatory Support System is the subject of U.S. patents #5148802, #5239995, #5313937, #5433193, and other pending U.S. and foreign patents. BiPAP is a registered trademark of Respironics.
Limited Warranty

Respironics warrants that the BiPAP® Vision™ Ventilatory Support System (BiPAP Vision) shall be free from defects of workmanship and materials and will perform in accordance with the product specifications for a period of one year from the date of sale by Respironics. If the product fails to perform in accordance with the product specifications, Respironics will repair or replace—at its option—the defective material or part. Respironics will pay customary freight charges from Respironics to the dealer location only. This warranty does not cover damage caused by accident, misuse, abuse, alteration, and other defects not related to materials or workmanship.

Respironics disclaims all liability for economic loss, loss of profits, overhead or consequential damages which may be claimed to arise from any sale or use of this product. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty is given in lieu of all other express warranties. In addition, any implied warranty, including any warranty of merchantability or fitness for the particular purpose, is limited to one year. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

The warranty for repairs is 90 days for labor and one year on the part(s) that was replaced.

To exercise your right under this warranty, contact your local authorized Respironics dealer or contact Respironics at:

Visit Respironics Home Page on the World Wide Web at:

http://www.respironics.com
Table of Contents

Chapter 1: Introduction ...1-1
 1.1 BiPAP Vision Ventilatory Support System Overview 1-2
 1.2 Service Notice .. 1-3
 1.3 Technical Support ... 1-3

Chapter 2: Warnings, Cautions, and Notes ..2-1
 2.1 Warnings ... 2-2
 2.2 Cautions .. 2-3
 2.3 Notes ... 2-4

Chapter 3: Description and Theory of Operation ...3-1
 3.1 BiPAP Vision System .. 3-2
 3.2 Power Supply Subsystem (PSS) ... 3-6
 3.3 Main Control (MC) .. 3-8
 3.4 Pressure Control (PC) .. 3-9
 3.5 Display Control (DC) .. 3-11
 3.6 Airflow Module (AFM) ... 3-14
 3.7 Oxygen Module (OM) .. 3-16
 3.8 Description of Ventilator Modes ... 3-17
 3.9 Nurse Call / Remote Alarm .. 3-19
 3.10 Patient Disconnect Alarm Description ... 3-21

Chapter 4: Specifications and Control Ranges ..4-1
 4.1 Specifications ... 4-2
 4.2 Control Ranges and Increments ... 4-5

Chapter 5: Routine Maintenance ...5-1
 5.1 Cleaning .. 5-2
 5.2 Replacing the Inlet Filter .. 5-3
 5.3 Cleaning / Replacing the Nylon Mesh Inlet Filter 5-4
 5.4 Replacing the Oxygen Regulator Filter .. 5-6
 5.5 Changing the System Fuses ... 5-8
 5.6 Voltage and Fuse Selection ... 5-10
 5.7 Power Cord Inspection .. 5-10
 5.8 Internal Alarm Battery .. 5-11
 5.9 Preventive Maintenance Schedule ... 5-14

Chapter 6: Troubleshooting ...6-1
 6.1 Overview ... 6-2
 6.2 Description of System Alarms ... 6-5
 6.3 Alarm Indicators .. 6-7
 6.4 Troubleshooting .. 6-8
 6.5 Error Codes ... 6-12
 6.6 Vent Inop Errors ... 6-14
Chapter 7: Repair and Replacement ... 7-1
 7.1 Contact Information ... 7-2
 7.2 Exploded View ... 7-3
 7.3 BiPAP Vision Repair Kits ... 7-5
 7.4 Mobile Stand II & III Repair Parts ... 7-10
 7.5 Replacement Identification Photos ... 7-11
 7.6 Touch Pad Replacement Instructions .. 7-59

Chapter 8: Testing and Calibration ... 8-1
 8.1 Overview ... 8-2
 8.2 Recommended Testing after Part(s) Replacement ... 8-3
 8.3 Exhalation Port Test .. 8-5
 8.4 Total Operating Hours Transfer Procedure .. 8-8
 8.5 Blower / Valve Calibration Procedure .. 8-10
 8.6 Performance Verification .. 8-12
 8.7 Run-In Cycle Procedure .. 8-16
 8.8 System Final Test ... 8-18
 8.9 PC/Laptop Set-up Procedure ... 8-37
 8.10 Test Cable Usage Definitions ... 8-40
 8.11 Oxygen Flow Module Test .. 8-41

Chapter 9: Option Instructions ... 9-1
 9.1 PAV/T Mode Installation or EPROM Upgrade .. 9-2
 9.2 Oxygen Baffle Installation Instructions ... 9-6

Chapter 10: Summary of Upgrades for Repairs of Vision units with Serial
 Numbers 100500 to 106000 ... 10-1
 10.1 Summary of upgrades for repairs of Vision units w/ serial numbers
 100500 to 106000 ... 10-2
 10.2 Repair Kits No Longer Manufactured ... 10-5
 10.3 Installation/Upgrade Instructions for Repair Parts 10-6

Appendix A: Tools and Equipment ... A-1
 A.1 Service Tools and Supplies .. A-2
 A.2 Acceptable Test Equipment ... A-3
 A.3 TSI, Inc. Certifier Test System .. A-6

Appendix B: Schematics ... B-1
 B.1 Schematic Statement .. B-2
 B.2 Main Control (MC) .. B-3
 B.3 Display Control (DC) ... B-9
 B.4 Pressure Control (PC) ... B-20
 B.5 Air Flow Module (AFM) ... B-25
 B.6 Oxygen Module (OM) ... B-26
 B.7 Power Supply ... B-27
Chapter 1: Introduction

1.1 BiPAP Vision Ventilatory Support System Overview 1-2
1.2 Service Notice .. 1-3
1.3 Technical Support ... 1-3
Chapter 1: Introduction

1.1 BiPAP® Vision™ Ventilatory Support System Overview

The BiPAP Vision Ventilatory Support System (BiPAP Vision), shown in Figure 1-1, is a microprocessor-controlled, positive pressure ventilatory assist system. The BiPAP Vision incorporates a user interface with multifunction keys, real time graphic displays, and integral patient and system alarms.

The BiPAP Vision features a centrifugal blower to generate airflow, as well as hardware and software platforms that can be upgraded with an oxygen module and additional patient alarms. The system operates in the Continuous Positive Airway Pressure (CPAP), Pressure Support (S/T), and optional Proportional Assist Ventilation/Timed (PAV/T) modes.

The BiPAP Vision contains a variety of integrated safety and self-diagnostic features. All system functions are checked at start-up and during operation. Errors are reported by visual and/or audible indicators.

Pressure regulation is achieved by monitoring proximal airway pressure and adjusting flows accordingly to ensure that the proximal pressure equals the set pressure.
1.2 Service Notice

This service manual was prepared by Respironics primarily for use by qualified technicians required to service the BiPAP Vision.

1.3 Technical Support

Respironics is committed to customer satisfaction, and may be contacted with any questions or for technical support at the following numbers:

U.S. and Canada

Phone: 1-800-345-6443
Fax: 1-800-866-0245

International

Phone: 1-724-387-4000
Fax: 1-724-387-5012

E-Mail
service@respironics.com

Visit Respironics Home Page on the World Wide Web at:
http://www.respironics.com
Chapter 2: Warnings, Cautions, and Notes

2.1 Warnings .. 2-2
2.2 Cautions ... 2-3
2.3 Notes .. 2-4
Chapter 2: Warnings, Cautions, and Notes

WARNING: Indicates the possibility of injury.

CAUTION: Indicates the possibility of damage to the device.

NOTE: Places emphasis on an operating or procedural characteristic.

2.1 WARNINGS

2.1.1 Safety

• Do not use the BiPAP Vision in the presence of a flammable anesthetic mixture with air, oxygen, or nitrous oxide.

• Oxygen supports combustion. Do not use oxygen while smoking or in the presence of an open flame.

• When using the optional oxygen module, the BiPAP Vision does not provide an oxygen sensor to monitor oxygen concentrations delivered to the patient circuit. Therefore, the use of oxygen with the BiPAP Vision should be monitored through oximetry.

NOTE: Refer to the Clinical Manual for guidelines on Applications and Operation.

2.1.2 Operational

• If the “Ventilator Inoperable” indicator illuminates, refer to Chapter 6 of this manual for troubleshooting guidelines.

• Never attach oxygen tubing or any positive pressure source to the pressure port on the front panel of the BiPAP Vision.
2.1.3 Service

CAUTION: Electronic components used in this device are subject to damage from static electricity. Repairs made to this device must be performed only in an antistatic, ESD-protected environment.

- Do not attempt to make connection to the diagnostic RS232 connector on the back panel of the BiPAP Vision to obtain repair information while the unit is operating on a patient.
- To assure the safety of the service technician and specified performance of the device, Respironics recommends that only qualified technicians perform repairs to the BiPAP Vision. Contact Respironics Technical Service for service training and authorization information.
- High voltages are present inside this device. To avoid electrical shock, disconnect the electrical supply before attempting any repairs on the device.
- For continued protection against risk of fire, replace fuses with those of the same type and rating only.

2.1.4 Cleaning

- To avoid electrical shock, unplug the BiPAP Vision unit before cleaning it.

2.2 **CAUTIONS**

- While cleaning the unit, do not allow any liquid to enter the cabinet or the inlet filter.
- Care should be taken to avoid exposing the BiPAP Vision to operating, storage, and transport temperatures near the extremes specified in Chapter 4. If exposed to such temperatures, allow the unit to cool or warm to room temperature before turning it on.
- The unit must be positioned on its base for proper operation.
- Always use an inlet filter when the BiPAP Vision is in use.
- If using the oxygen module, do not exceed 100 psig oxygen supply pressure.
2.3 NOTES

- This device contains a rechargeable nickel-cadmium (NiCAD) battery which is used by the alarms in the event of a power failure.

- Refer to the BiPAP Vision Clinical Manual for a complete list of operational Warnings, Cautions, and Notes.

Additional WARNINGS, CAUTIONS, and NOTES are located throughout this manual.
Chapter 3: Description and Theory of Operation

3.1 BiPAP Vision Ventilatory Support System 3-2
3.2 Power Supply Subsystem (PSS) .. 3-6
3.3 Main Control (MC)... 3-8
3.4 Pressure Control (PC) ... 3-9
3.5 Display Control (DC)... 3-11
3.6 Airflow Module (AFM) ... 3-14
3.7 Oxygen Module (OM) ... 3-16
3.8 Description of Ventilator Modes ... 3-17
3.9 Nurse Call / Remote Alarm .. 3-19
3.10 Patient Disconnect Alarm ... 3-21
Chapter 3: Description and Theory of Operation

3.1 BiPAP Vision Ventilatory Support System

The BiPAP Vision is a microprocessor-controlled, positive pressure ventilatory assist system. The system’s integral air intake filter draws in ambient air which is then pressurized by the system’s centrifugal blower assembly. The In-Line Flow Restrictor (ILFR) valve and Pressure Regulation Valve (PRV), which are both located in the blower discharge airway, regulate total flow and pressure at the blower discharge system. An oxygen module can be installed to add a controlled source of supplemental oxygen, up to 100%, to the patient.

The Pressure Control (PC) board continuously monitors the readings from the Airflow Module (AFM) of total gas flow, temperature, generated pressure, and patient circuit pressure to ensure prescribed therapy to the patient. The PC board transmits process data to the Main Control (MC) board which then provides overall control of the BiPAP Vision, including conveying instructions to the PC board regarding required valve stem position and blower speed.

The unique design and operation of the ventilator makes it especially suited for mask applications. Designed with the BiPAP Auto-Trak Sensitivity™ feature that automatically adjusts to changing circuit conditions, the ventilator is capable of ensuring optimum patient-ventilator synchronicity despite changes in breathing patterns and circuit leaks. (Refer to the BiPAP Vision Clinical Manual.)

A liquid crystal display (LCD) screen is mounted on the front enclosure of the BiPAP Vision. The LCD and the Display Control (DC) board provide the primary user interface with the ventilator, including the visual presentation of data, control features, and visual and audible presentation of alarm conditions. The user interacts with the ventilator through the touch pad and rotation of the rotary encoder while observing the results of this input on the display. The information provided on the display varies depending on the state of the ventilator and / or the operations being performed.

The BiPAP Vision incorporates a number of safety features and self-diagnostic systems. System internal functions are checked automatically at start-up, and periodically throughout normal operation. An audible and visual alarm announces failures of principal subsystems. Integrated patient alarms are also provided and are announced on a visual message display area as well as with an audible tone.

The following sections of this chapter describe in more detail the major subsystems and components that make up the BiPAP Vision and its basic theory of operation.
<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS</td>
<td>The Power Supply Subsystem (PSS) provides DC power to the BiPAP Vision from an AC source.</td>
</tr>
<tr>
<td>MC or MCS</td>
<td>The Main Control (MC) board or Main Control Subsystem (MCS) performs all control, data acquisition, and calculations required for the user-selected parameters. In addition, the MC performs the start-up test and reports all errors.</td>
</tr>
<tr>
<td>PC or PAS</td>
<td>The Pressure Control (PC) board or Pressure Airflow Subsystem (PAS) controls the blower and valves to generate and regulate the system pressure. The PAS senses the outlet pressure and the patient pressure and regulates the outlet pressure to the patient circuit.</td>
</tr>
<tr>
<td>DC or D/CS</td>
<td>Through the touch pad, the Display Control (DC) board or Display/Control Subsystem (D/CS) evaluates user inputs and passes valid parameters to the MC. The DC receives display data from the MC. The DC also has its own internal functions; the results of which are reported to the MC.</td>
</tr>
<tr>
<td>AFM</td>
<td>The Airflow Module (AFM), including the mass airflow sensor in the airstream, provides an airflow measurement interface to the PC, allowing the PC to measure total flow, temperature, and system pressure.</td>
</tr>
<tr>
<td>ILFR</td>
<td>The In-Line Flow Restrictor (ILFR) valve assembly regulates the total flow from the blower discharge.</td>
</tr>
<tr>
<td>PRV</td>
<td>The Pressure Regulation Valve (PRV) assembly is opened during exhalation to allow the patient flow to be exhausted.</td>
</tr>
<tr>
<td>OM</td>
<td>The Oxygen Module (OM) subassembly regulates and proportions the oxygen released into the air from the blower according to the oxygen concentration level set on the parameters screen.</td>
</tr>
</tbody>
</table>
3.2 Power Supply Subsystem (PSS)

The PSS supplies the Main Control (MC), Pressure Control (PC), and the Display Control (DC) with the proper DC supply voltage. Safety features designed into the circuitry include an overvoltage disconnect, low voltage supply detect, and line loss detect. Other features include “power-on” indicator voltage, circulation fan power, and an On/Off switch connection.

Figure 3-2
PSS Block Diagram
3.2.1 Input Range

The BiPAP Vision can operate with an AC input of 100, 120, 230, or 240 VAC (±10%) depending on the model.

3.2.2 DC Supply

The output DC supply is fused at 30 amps and delivers between 20.6 VDC and 35 VDC with a maximum ripple of 1 vpp (peak-to-peak voltage) to the MC, PC, and DC.

3.2.3 Overvoltage Disconnect

The overvoltage disconnect is used to remove the DC supply output when it exceeds 36 VDC and reconnects it when the level returns to an acceptable value.

3.2.4 AC Fail

The MC module monitors the level of DC supply voltage and the AC voltage output from the transformer supply winding to determine if an AC fail condition exists.

Low DC supply detect – If the DC supply voltage drops to 19.38 VDC or lower (nominal), an AC fail condition will be triggered.

Line loss detect – The AC voltage output from the transformer supply winding is monitored for a loss-of-cycle condition. Both legs of the winding are input to the monitoring circuitry. Whenever AC is lost, the AC fail signal is activated.

3.2.5 Outputs

The PSS module also includes the following:

a. Front panel “power-on” indicator voltage (J5)

b. Circulation fan power (J4)

c. On / Off switch (part of J2)

d. Circulation fan current sense information to (J12) on the PC subsystem.
3.3 Main Control Subsystem (MC)

The MC is microcontroller-based and provides overall system control and supervision by monitoring the activity of all the other system modules and providing commands to these modules based on user and system input. The MC also acts as the bus controller for all subsystem communications using the Intermodule Communications Bus (ICB).

* For S/N units >106K
3.4 Pressure Control Subsystem (PC)

The PC functions through a microcontroller to:

a. Communicate with the Main Controller Subsystem (MC)

b. Communicate to a terminal / PC for diagnostics

c. Acquire sensor data through an Analog-to-Digital Converters (ADC, A / D)

d. Control valves and the blower motor through a Digital-to-Analog Converter (DAC)

e. Respond to or invoke an error signal

* For Units Serial Number <106K

![Microprocessor Block Diagram](image-url)
3.4.1 Microcontroller Interface

Programmable Array Logic (PAL) memory device decodes the chip selects in such a way that the program code is retrieved from the EEPROM and data is retrieved from the RAM. An additional PAL provides the interface for the Intermodule Communications Bus (ICB). The microprocessor monitors: oxygen and gas temperatures; Airflow Module (AFM) and Oxygen Module (OM) detection; In-Line Flow Restrictor (ILFR), Pressure Regulation Valve (PRV), and oxygen valve DAC control voltage; blower DAC control voltage; and power supply and reference voltages.

3.4.2 Blower Motor Drive

The complete motor controller includes closed loop speed control via analog circuitry. When the desired speed and actual speed are known by the processor, the speed is adjusted by increasing or decreasing the DAC converter output to achieve proper pressure and flow.

3.4.3 Pressure Regulation Valve (PRV) and In-Line Flow Restrictor (ILFR) Drives

The valve drives have closed loop control via the microprocessor. The microprocessor reads seven pressure, flow, and temperature sensors through the PC hardware, and receives prescription parameters from the MC. The microprocessor then adjusts analog DAC voltages to control the PRV and ILFR valves as required to meet the prescription.

3.4.4 Pressure Sensors

The PC module has two dual pressure sensors (MT1 and MT2) and a single sensor (MT3). They measure patient pressure, unit outlet pressure, and barometric pressure. These sensors are subject to calibration with their calculated slope and intercept values stored in the on-board EEPROM. MT3 is a backup outlet pressure sensor that provides a redundant check of the primary outlet sensor located on the AFM.

NOTE: Calibration is factory programmed and field adjustment is not required.

3.4.5 Error Line Control (ELC) Circuit

The ELC circuit is designed to simply detect a failure from, or signal a failure to, the MC and Display Control (DC) modules. If the ELC line activates, only a power On / Off of the ventilator can clear this latched circuit state.

3.4.6 Diagnostics Connector

The diagnostic connector (J3) interfaces with the microprocessor to view PC functions and system errors on units from serial number 100500 to 105999, unless upgraded. For units greater than this, the diagnostic connector is on the rear of the unit.
3.5 Display Control Subsystem (DC)

The DC provides a means of displaying the operating mode, measured and calculated operating parameters, parameter setpoints, alarm limits, real-time graphics, and general status information. The DC also provides the necessary user interface controls to modify the operating mode, parameter set points, alarm limits, and graphical scales; and to reset or silence the audible alarm, and freeze or unfreeze graphics. The displays and controls are described in more detail in the following subsections.

* For Units Serial Number < 106K

*Figure 3-5
DC Block Diagram*
3.5.1 DC/DC Converter
The DC/DC converter reduces the +24 VDC bulk supply to a +5 VDC logic level. (S/N <106K)

3.5.2 Display Backlight and Contrast Adjustment
A serial 8-bit D/A converter provides two, 0 to +5 VDC which originate in the MCU for these controls.

3.5.3 Display Voltage DC/DC Converter
This adjustable negative voltage converter reduces the level of bulk supply voltage needed to operate the Liquid Crystal Display (LCD) contrast control.

3.5.4 Cold Cathode Fluorescent Tube (CCFT) Inverter
The DC design has a DC to AC inverter that typically provides 390 VAC to the fluorescent tube in the display through (J2). The current varies to adjust the brightness of the fluorescent tube.

3.5.5 Reference Voltage Checks
This circuit compares reference voltages to determine if they are at the appropriate level.

3.5.6 Power Failure Alarm Battery Enable
This control detects a power failure from the DC supply.

3.5.7 Alarm Battery Voltage Cutout/Check
The battery voltage cutout /check monitors the battery voltage level and cuts it out if it drops to a level of approximately 3VDC.

3.5.8 Backup Battery/Charger
The DC contains a 3.6 V nickel cadmium rechargeable battery that operates the audible and visual alarm indicators for at least 20 minutes, when fully charged, when the Error Line Control (ELC) is active, and the DC supply has been removed. The battery output is compared to a reference voltage and the battery is recharged as required through a charging circuit. If necessary, refer to page 5-12 to recharge the battery.

3.5.9 Check Ventilator Light Emitting Diode (LED) Enable Current Check
An internal test is performed to verify that the Check Ventilator LED current is acceptable.

3.5.10 Vent Inop LED Current Check
An internal test is performed to verify the Ventilator Inoperative LED current is acceptable.

3.5.11 Error Line Control (ELC) Circuits
The DC contains redundant error signaling circuitry to communicate error conditions among the sub-systems. The circuitry’s redundant and diverse nature minimizes the chance of communication failures.
3.5.12 Error LED

The error LED indicates that an error condition was detected, and it illuminates to make unit diagnosis easier.

3.5.13 Diagnostic Interface

The diagnostic connector interface (J5) interfaces with the MCU to provide a means for the DC to download diagnostic data to a terminal or PC.

3.5.14 EEPROM

A serial EEPROM stores the setpoints for the backlighting and contrast and also for the appropriate diagnostic data.

3.5.15 LCD Controller

The DC circuit contains an LCD controller that interfaces with the display.

3.5.16 Debouncing / Keypad Matrix

The matrix keys are debounced and then the microprocessor scans the matrix to determine what key was depressed.

3.5.17 Rotary Encoder Control

The rotary encoder control circuit detects relative position, direction, and speed of the rotary encoder, all within one detent of movement.

3.5.18 Audible Alarm Activation

The audible alarm is activated by either an input from the ELC, the power fail circuitry, or the test alarm signal from the MCU. It will also occur when the wrong key has been depressed, an adjustable parameter has reached its limit, or the error signal has been activated.

3.5.19 Audible Alarm Current Check

An internal test is performed to verify the audible alarm current is acceptable.

3.5.20 “Power-on” in Safe State

The DC contains circuitry that causes the hardware to “power-on” in a safe state; which is when the backlight is off, the display is off, and the Intermodule Communications Bus (ICB) is terminated. When the MCU determines that no Vent Inop error exists, it lets the unit resume operation under normal operating conditions.

3.5.21 Watchdog and Low Voltage Reset

The watchdog function has to be periodically reset by the microprocessor if a time-out period has been exceeded. This function is designed to reset the processor if the software gets lost. When a low logic level is detected, the ELC will be activated resulting in a system shutdown.
3.6 Airflow Module (AFM)

The AFM is a submodule of the Pressure Control (PC). The AFM receives power from the PC and provides the following analog signals to the PAS:

a. Gas flow indication
b. Pressure indication
c. Temperature indication

To provide indications accurate enough for system requirements, the AFM must be calibrated. Calibration data is stored in a nonvolatile memory that is part of the AFM. The flow, pressure, and temperature indications are for the ventilator gas stream flowing through a “flow body” attached to the AFM circuit board.

3.6.1 Flow Body

The flow body, with laminar flow element, is added to the ventilator gas stream, creating a small pressure differential to short a fraction of the flow through the AFM sensor. Inlet, outlet, and pressure ports are part of the flow body for tubing attachment to the AFM electronic sensors. Also, a hole is molded into the flow body to position the temperature sensor. The body has molded feet for attaching it to the AFM circuit board assembly.

![AFM Block Diagram](Figure 3-6 AFM Block Diagram)
3.6.2 Analog Reference

The PC provides the AFM with power in the form of +12 VDC, −12 VDC, analog ground, +5 VDC, and digital ground. An analog voltage reference supply is derived from the +12 VDC to power the pressure and flow sensors so their bridge outputs can be factory calibrated.

3.6.3 Flow Indication

Total gas flow indication is provided by MT1. It is then amplified by an instrumentation amplifier, low-pass filtered, and sent to the PC board for conversion.

3.6.4 Pressure Indication

MT2, a precision compensated pressure sensor, provides unit outlet pressure indication. The sensor is followed by a low-pass filter and a differential amplifier, and then sent to the PC board for conversion.

3.6.5 Temperature Measurement

The temperature is measured using a sensor inserted into a molded hole in the flow body. The BiPAP Vision requires temperature indication to correct air density and detect an undesirable temperature rise in the patient circuit.

3.6.6 Calibration

A data acquisition system, operating on a personal computer, is the control platform for AFM calibration of temperature, pressure, and flow. Correction factors are derived and stored in the AFM module in an EEPROM, with calibration accomplished by balancing the flow transducer bridge with an EEPROM. The PAS uses temperature, pressure, and flow to correct for actual operating conditions. Once calibrated, the AFM is interchangeable with other AFM assemblies.

NOTE: Calibration is factory programmed only.

3.6.7 Module Detection

The PC must know the AFM is connected, since it is required for normal operation of the ventilator. An extra line pulls a PC microcontroller line near zero volts. If the line is above two volts, the AFM is not connected, and the PC will transition to the error state.
3.7 Oxygen Module (OM)

The OM is an optional submodule of the Pressure Control (PC). It receives power from the PC and provides an analog signal to the PC for oxygen flow indication. To provide indications accurate enough for system requirements, the OM must be calibrated. Calibration data is stored in a nonvolatile memory that is part of the OM. The flow indication is for the ventilator pure oxygen stream flowing through a flow body attached to the OM circuit board.
3.8 Description of Ventilator Modes

The BiPAP Vision comes standard with two operating modes: Continuous Positive Airway Pressure (CPAP) and Spontaneous/Timed (S/T). A third, optional, Proportional Assist Ventilation/Timed (PAV/T) is also available.

3.8.1 Continuous Positive Airway Pressure (CPAP)

CPAP provides a constant pressure level delivered over the complete range of the patient’s spontaneous breathing cycle. Pressure is controlled and maintained. Flow is available to meet changing patient demands and automatically compensate for leaks. The mode delivers the prescribed level of pressure that has been set with the CPAP control (Range: 4 to 20 cm H₂O).

3.8.2 Spontaneous/Timed (S/T)

The S/T mode provides either pressure support during spontaneous breaths or time-triggered, pressure-limited, time-cycled machine breaths.

Spontaneous Breaths

Two pressure levels are set: an EPAP level (range 4 to 20 cm H₂O) to establish a baseline pressure and an IPAP level (range 4 to 40 cm H₂O) that determines the amount of pressure support delivered with each breath (PS = IPAP– EPAP). During the inspiratory phase, the BiPAP Vision responds as necessary to satisfy the patient’s flow requirements while maintaining the preset IPAP pressure. Under these conditions, the patient is active in determining inspiratory time and tidal volume. The delivered tidal volume will be dependent upon the pressure differential between the IPAP and EPAP levels, patient effort, and the combined resistance and compliance of the circuit and the patient. If the patient does not actively participate, the BiPAP Vision responds appropriately.

Timed Breaths

The S/T mode can also provide a time-triggered, pressure-limited, time-cycled machine breath, when the spontaneous respiratory rate drops below the Rate control setting. If the ventilator does not detect a spontaneous trigger within the interval determined by the Rate control setting, it will activate a time-triggered machine breath and deliver the IPAP level. Machine breaths are not synchronized with patient effort, and once triggered to IPAP, the balance of the cycle is determined by the Timed Inspiratory Control setting. A maximum Timed Inspiratory setting of 3.0 seconds can be set, as long as the I:E Ratio does not exceed 1:1, as determined by the Rate setting. For example, see Figure 3-12. If the Rate control is set at 10 BPM, the total respiratory cycle is six seconds. If a spontaneous trigger occurs before the six-second cycle time has elapsed, a spontaneously-triggered, pressure support breath occurs, a timed trigger will not occur, and the timer is reset for a new six second interval. If a six second interval passes without a spontaneous trigger, a timed trigger will be initiated and IPAP will be delivered for the duration of time set by the Timed Inspiration setting.
3.8.3 Proportional Assist Ventilation / Timed Mode (PAV/T)

For a detailed description of functioning of the Proportional Assist Ventilation/Timed (PAV/T) Mode, refer to the appropriate BiPAP Vision Clinical manual. This mode utilizes the design features of S/T mode and is a software enhancement only.
3.9 Nurse Call/Remote Alarm Feature Operation (for s/n units greater than 106000 only)

The unit will activate a remote signal for system shutdowns, patient alarms, and Loss of AC Power conditions which inhibit therapy. Note that a Check Vent condition does not activate the nurse call signal. The nurse call signal can be silenced via the Alarm Silence key for the same amount of time that the audible alarm on the Vision is silenced (two minutes). The signal can also be cleared by selection of the Alarm Reset key. The nurse call signal will automatically terminate when a patient alarm self-cancels.

The Nurse Call/Remote Alarm feature is meant to be a backup with the main Vision alarm system being the primary alarm/alert mechanism.

The Nurse Call or Remote Alarm signal is generated on the MC board and then can be connected to a hospital nursing station. This signal is opto-isolated and used to switch a relay to provide open or closed contacts to the remote station circuit. The arrangement of the two jumpers (JP1 and JP2) on the MC determine the output configuration that is utilized by a common connector on the rear panel of the Vision.

The Nurse Call Adapter (RI P/N 1014280) along with the Nurse Call Cable (RI P/N 1003742) can be used to connect the Vision to a Nurse Call station.

The jumper configuration on the MC circuit board can be selected to meet requirements according to the following table. Refer to the photo for jumper location.

<table>
<thead>
<tr>
<th>Option</th>
<th>JP1</th>
<th>JP2</th>
<th>No Alarm Output</th>
<th>Alarm Option</th>
<th>System Requiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3</td>
<td>2,3</td>
<td>51.1K</td>
<td>Open</td>
<td>Respironics Remote Alarm</td>
</tr>
<tr>
<td>2</td>
<td>2,3</td>
<td>1,2</td>
<td>Closed</td>
<td>Open</td>
<td>Central Alarm System</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>1,2</td>
<td>Open</td>
<td>Closed</td>
<td>Central Alarm System</td>
</tr>
</tbody>
</table>

NOTE: Option 2 is the original factory set configuration for S/N 106001 to 106368. Option 3 is the original factory set configuration for S/N 106369 and greater.
Chapter 3: Description and Theory of Operation

Nurse Call / Remote Alarm (Continued)

Details of option selections:

Option 1:

For use with Respironics Remote Alarm (RI p/n 34003, or equivalent).

Option 2:

For use with alarm systems requiring NORMALLY OPEN contacts for an “alarm” condition and CLOSED contacts for a “no alarm” condition.

Option 3:

For use with alarm systems requiring NORMALLY CLOSED contacts for an “alarm” condition and OPEN contacts for a “no alarm” condition.

Caution: The Vision Nurse Call/Remote Alarm port shall be connected to nurse call systems that meet the relevant local safety standards. Secondly, the nurse call port shall be connected to a low voltage circuit (less or equal to 42.4V peak ac or 50V dc). The leakage currents from the low voltage circuit shall not cause the Vision leakage currents to exceed acceptable levels. Lastly, the rated output current of the low voltage circuit shall not exceed 1A.
3.10 BiPAP Vision Patient Disconnect Alarm Description of Operation

The patient disconnect alarm ("Disconnect") is based on the flow limit control algorithm in the Vision. The mitigation for the Disconnect alarm is to put the unit into flow limit control. This same action is done when the user selects the Standby key.

3.10.1 Detection

The unit determines that a patient is not connected to the circuit anymore based on flow for the given pressure. This is implemented via a look-up table, with a flow entry for every generated pressure. The range of flows is 95 to 180 LPM, with 180 LPM being the low limit for any pressure above 9 cmH2O. If the unit detects flow greater than the threshold at any given pressure for more than 10 seconds (3 seconds in for software earlier than 13.2), the unit puts itself into the Flow Limit Control state. In this state, the unit attempts to limit the flow coming out of the mask in order to make putting the mask back on the patient easier and more comfortable for the patient.

Also, for safety concerns, the oxygen valve closes to discontinue oxygen delivery during this condition.

When the Standby key is selected by the user, the unit automatically enters the FLC state, regardless of the flow at the time the Standby key is selected.

In order to limit the flow, the unit drops the pressure to 4 cmH2O. The algorithm was enhanced to work with the Full Face Mask a while ago. The Full Face Mask has a flap that will close the patient circuit and open the mask to atmosphere upon loss of flow and pressure. This flap must be kept in a position during FLC so that the patient circuit is not occluded. This allows the unit to detect when the patient is reconnected. The enhancement to the algorithm consists of the pressure being slowly increased to keep the flow at 160-170 LPM. The pressure level is limited to 10 cmH2O for software 11.2 and 11.3 (15 cmH2O for software 11.3a and higher), regardless of how much flow is being generated. Therefore, the unit will either output 160-170 LPM at some pressure or will be limited to some lesser flow at 10 cmH2O for software 11.2 and 11.3 (15 cmH2O for software 11.3a and higher).

3.10.2 Termination

There are two termination stages to FLC. During the first stage, as the pressure is being increased from 4 cmH2O to its maximum of 10 cmH2O for software 11.2 and 11.3 (15 cmH2O for software 11.3a and higher), FLC will be automatically terminated if the unit detects negative flow (i.e., the patient breaths back into the unit). This pressure increase takes about 10 – 12 seconds for software versions earlier than 13.2, depending on how soon the flow set point is reached. There have been two enhancements in software version 13.2 in this area. The first is that the pressure is increased faster (1 cmH2O per 40 ms instead of the previous ¼ cmH2O per 40 ms) to shorten the amount of time in stage one. The second change concerns the flow range processing. In software versions earlier than 13.2, when the pressure is dropped to 4 cmH2O and the flow is greater than the desired flow range (160-170 LPM), the flow limit algorithm attempts to decrement the pressure to get the flow into that desired range. In software version 13.2, that was changed to immediately enter stage 2 under that condition.
Once either the flow set point or the maximum pressure is reached, the unit will automatically terminate FLC for either the detection of negative flow or if flow varies from the current flow by more than 40 LPM in software versions prior to 13.2 and 20 LPM for software version 13.2. For instance, if the 160-170 LPM set point has been reached, the unit will terminate FLC if the flow drops below 120 LPM or goes above 210 LPM in older software and 140-190 LPM in the new software. If the flow set point has not been reached, the current flow at 10 cmH2O for software 11.3 and 11.3 (15 cmH2O for software 11.3a and higher) is used as the set point. For instance, if only 80 LPM can be reached at 10 cmH2O for software 11.3 and 11.3 (15 cmH2O for software 11.3a and higher), the thresholds for automatic termination of FLC will be 40 LPM and 120 LPM in older software and 60-100 LPM in new software.

This allows FLC to be terminated without the patient necessarily breathing back into the machine but by the simple act of refitting the mask to the patient.

The Standby condition, besides being terminated automatically by the above methods, can also be manually terminated by reselecting the highlighted Standby soft key on the Monitoring screen.

When FLC is terminated during a “Disconnect” alarm period, the alarm is self-cancelled. That means that the audible component of the alarm is silenced but the visual component of the alarm remains displayed on the screen. That can be cleared by selecting the Alarm Reset key.

Note: During FLC, the oxygen parameter setting reduces to 21%, regardless of the setting.
Chapter 4: Specifications and Control Ranges

4.1 Specifications ... 4-2
4.2 Control Ranges and Increments 4-5
Chapter 4: Specifications and Control Ranges

4.1 Specifications

ENVIRONMENTAL:
Temperature Operating: 40°F to 104°F (4.4°C to 40°C)
Transport / Storage: –4°F to 140°F (–20°C to 60°C)
Humidity Storage and Operating: 0 to 95% Relative Humidity

PHYSICAL:
Dimensions At the base: 16” (L) × 14¾” (W) × 10⅜” (H)
(40.6 cm x 36.5 cm x 27cm)
Weight 34 lbs (15.4 kg)

ELECTRICAL:
AC Input Voltage (VAC) 100/120/230/240 VAC
Single Phase ±10%
Fuses 100 – 120 VAC ~ T 3.5 A, 5 × 20 mm, Time Lag (×2)
(For serial no.’s 100500 and higher – Respironics Reorder # 1000749)
115 VAC ~ T 3.0 A, 250 V, ¼” × 1¼”
(For serial no.’s 100499 and lower – Respironics Recorder # 582100)
220 VAC, 230 VAC and 240 VAC ~ T 1.6 A, 250 V, 5 × 20 mm
(For all serial no.’s – Respironics Recorder # 1000750)
Power Consumption 300 VA max.
AC Current 3.0 A maximum
AC Frequency 50/60 Hz
Class Protection Against Electrical Shock: Class I
Specifications (Continued)

Type .. BF
Degree of Protection Against Harmful Ingress of Water:
Ordinary Equipment, IPX0

Electromagnetic Compatibility The BiPAP Vision meets the requirements of IEC 601-1-2
Earth Resistance Less than 0.10 ohms

Earth Leakage Current
- Normal Pole, No Earth, L2 Less than 300 µA
- Reverse Pole, No Earth, L2 Less than 300 µA
- Reverse Pole, No Earth, No L2.. Less than 1000 µA
- Normal Pole, No Earth, No L2.. Less than 1000 µA

Insulation Resistance Greater than 2 megaohms

Noise Level No specification is given because various test instruments, test procedures, and unit operating conditions produce varying results.

Alarm Sound Level Between 70 and 85 dBA peak at a distance of 1 meter.

PRESSURE:
Output 4 to 40 cm H₂O
Dynamic Regulation ± 2 cm H₂O at sinusoidal flow @ ± 100 L/min
Static Regulation ± 2 cm H₂O from –60 to 120 L/min
Elevation 0 to 5000 ft above sea level

CONTROL ACCURACY:
Timed Inspiration ± 0.2 sec of the set point
Rate ± 1 BPM of the set point
Oxygen Concentration The greater of ± 3% or ±10% of the set point

DISPLAY ACCURACY:
Pressure ± 1 cm H₂O
Volume ± 10% (during stable conditions)
Flow ± 10% (during stable conditions)
TRIGGER SENSITIVITY:
(Refer to BiPAP Vision Clinical Manual Auto-Trak section for more details)

- Spontaneous Trigger.. Shape Trigger V_{sw}
 Volume 6 cc above

- Spontaneous Cycle.. Spontaneous Expiratory Threshold (SET)
 Shape Cycle
 IPAP maximum of 3.0 sec
 Flow Reversal

OXYGEN MODULE INLET:

- Pressure Range... 50 to 100 psig

- Inlet Fitting... DISS male oxygen connector

INTERNAL BATTERIES:

- Alarm Battery.. NiCAD
 Location: D/C
 3.6 VDC, 110 mAh
 Rechargeable (See Section 5.9.3 for details)
 (RI P/N 1012819)

- Data Retention Battery (for original MCS board)
 Type: Lithium Cell
 Location: MCS
 +3 VDC, 300 mAh
 Not Rechargeable
 (RI P/N 1001988)

- Data Retention Battery (for current MC Board)
 Type: Lithium Cell
 Location: MCS
 +3 VDC, 300 mAh
 Not Rechargeable
 (RI P/N 1006005)
4.2 Control Ranges and Increments

NOTE: Refer to the applicable BiPAP Vision Clinical Manual for PAV/T information.

4.2.1 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control Range</th>
<th>Control Increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAP</td>
<td>4 to 40 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>EPAP</td>
<td>4 to 20 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>CPAP</td>
<td>4 to 20 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>Rate</td>
<td>4 to 40 BPM</td>
<td>1 BPM</td>
</tr>
<tr>
<td>Timed Inspiration</td>
<td>0.5 to 3.0 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td>IPAP Rise Time</td>
<td>0.05 to 0.4 sec</td>
<td>4 set points: .05, 0.1, 0.2, 0.4 sec</td>
</tr>
<tr>
<td>Oxygen Concentration (%O₂)*</td>
<td>21 to 100%</td>
<td>4% from 21 to 25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% from 25 to 100%</td>
</tr>
</tbody>
</table>

*With optional Oxygen Module

4.2.2 Alarms (Adjustable)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Control Range</th>
<th>Control Increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pressure</td>
<td>5 to 50 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>Low Pressure</td>
<td>Disabled to 40 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>Low Pressure Delay</td>
<td>0 to 60 sec.</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>Apnea</td>
<td>Disabled; 20 to 40 sec.</td>
<td>4 set points; Disabled, 20, 30, 40 sec.</td>
</tr>
<tr>
<td>Low Minute Ventilation*</td>
<td>Disabled to 99 L/min.</td>
<td>1 L/min.</td>
</tr>
<tr>
<td>High Rate*</td>
<td>4 to 120 BPM</td>
<td>1 BPM</td>
</tr>
<tr>
<td>Low Rate*</td>
<td>4 to 120 BPM</td>
<td>1 BPM</td>
</tr>
</tbody>
</table>

*With optional Alarm Module
4.2.3 Display Ranges & Increments

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DISPLAY RANGE</th>
<th>DISPLAY RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAP</td>
<td>0 TO 50 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>EPAP</td>
<td>0 TO 50 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>CPAP</td>
<td>0 TO 50 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>RATE</td>
<td>0 TO 150 BPM</td>
<td>1 BPM</td>
</tr>
<tr>
<td>Exhaled Tidal Volume (VT)</td>
<td>0 TO 4000 ML</td>
<td>1 ML</td>
</tr>
<tr>
<td>Minute Ventilation (Min Vent)</td>
<td>0 TO 99 L / Min</td>
<td>1 L / Min</td>
</tr>
<tr>
<td>Total Leak (Tot Leak)</td>
<td>0 TO 300 L / Min</td>
<td>1 L / Min</td>
</tr>
<tr>
<td>Patient Leak (Pt. Leak)</td>
<td>0 TO 300 L / Min</td>
<td>1 L / Min</td>
</tr>
<tr>
<td>Peak Inspiratory Pressure (Pip)</td>
<td>0 TO 50 cm H₂O</td>
<td>1 cm H₂O</td>
</tr>
<tr>
<td>Percent of Patient Triggered Breaths (Pt.trig)</td>
<td>0 TO 100%</td>
<td>1%</td>
</tr>
<tr>
<td>Ti/Ttot</td>
<td>0 TO 100%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Chapter 5: Routine Maintenance

5.1 Cleaning the BiPAP Vision .. 5-2
5.2 Replacing the Inlet Filter .. 5-3
5.3 Cleaning / Replacing the Nylon Mesh Inlet Filter 5-4
5.4 Replacing the Oxygen Regulator Filter 5-6
5.5 Changing the System Fuses .. 5-8
5.6 Voltage Selection ... 5-10
5.7 Power Cord Inspection .. 5-10
5.8 Internal Alarm Battery ... 5-11
5.9 Preventive Maintenance Schedule 5-14
5.1 Cleaning the BiPAP Vision

CAUTION: Do not immerse the BiPAP Vision in water or allow any liquid to enter the cabinet or the inlet filter.

NOTE: The following guidelines for cleaning refer to the BiPAP Vision only. Refer to the individual instructions for cleaning accessories.

5.1.1 Cleaning the Front Panel

Clean the front panel as needed by wiping with water or 70% isopropyl alcohol only.

5.1.2 Cleaning the Enclosure

Clean the exterior of the enclosure as needed by wiping with any anti-bacterial agent.

CAUTION: Do not allow any liquid to enter the cabinet or the inlet filter.

NOTE: Do not clean the Auto-Trak sticker with anything except mild soap and water.
5.2 Replacing the Inlet Filter

CAUTION: A dirty inlet filter may cause high operating temperatures, and may affect ventilator performance. Examine the inlet filter for integrity and cleanliness before each use, and as required during operation.

Step 1 Turn the BiPAP Vision OFF and unplug the electrical cord from the wall outlet and from the back of the unit.

Removing the Filter

Step 2 Remove the inlet filter cap by pinching the latch, then rotate the cap until the hinge is free from its slot.

NOTE: The inlet filter is disposable. Do not attempt to clean the inlet filter. When the filter is dirty replace it with a new filter. Use only Respironics filters; see Chapter 7 for the filter reorder number.

Installing the Filter

Step 3 Place the filter inside the cap, then reverse Step 2 to reinstall the filter cap.

NOTE: To clean any of the accessories, refer to each accessory’s instruction sheet.
5.3 Cleaning/Replacing the Nylon Mesh Inlet Filter

CAUTION: A dirty nylon mesh inlet filter may cause high operating temperatures and may affect ventilator performance.

Step 1 Turn the BiPAP Vision off and unplug the electrical cord from the wall outlet and from the back of the unit.

Step 2 Remove the filter cap and inlet filter. (See Section 5.2 for more detailed instructions on removing the filter cap and inlet filter.)

Step 3 Using a medium Phillips screwdriver, remove the two screws that secure the nylon mesh inlet filter to the filter enclosure. Remove the nylon mesh inlet filter.

NOTE: Depending on the condition of the nylon mesh inlet filter, it may be cleaned and reused. If the filter is in good shape, follow the cleaning instructions in Step 4. If the filter must be replaced, proceed to Step 5.

NOTE: If the nylon mesh inlet filter is to be cleaned, care should be taken to protect the adhesive on the edges of the filter. If the adhesive is damaged, the filter may not correctly seal when reinstalled.

Figure 5-2
Removing the Nylon Mesh Filter
Cleaning / Replacing the Nylon Mesh Inlet Filter (Continued)

Step 4 Using a solution of mild soap and water, carefully clean then thoroughly rinse the nylon mesh inlet filter. Insure that the filter is completely dry before reinstalling it in the unit.

Step 5 If necessary, remove the protective backing from the nylon mesh inlet filter. Align the new cleaned nylon mesh inlet filter with the filter enclosure. Press the edges of the filter firmly in place. Secure the filter to the filter enclosure using the two Phillips screws.
5.4 Replacing the Oxygen Regulator Filter

CAUTION: A dirty Oxygen Regulator filter may reduce system performance. Examine the filter for integrity and cleanliness before each use.

NOTE: Replace the filter as necessary to ensure normal operation.

Step 1 Position the BiPAP Vision so that the back is easily accessible.

Step 2 Disconnect the Oxygen Module (OM) input line.

Step 3 Firmly grasp the plastic body of the regulator bowl and rotate it counterclockwise to remove it. (Direction is referenced from the bottom of the unit.)

NOTE: The regulator bowl has a standard right-hand thread.

Step 4 Remove the original filter.

*Figure 5-3
Removing the OM Regulator Bowl*
Step 5 Insert the new filter.

Step 6 If necessary, clean the regulator bowl with mild soap and water and dry completely.

Step 7 Put the regulator bowl in place and rotate it clockwise until securely tightened.

Step 8 Connect the oxygen input line to the OM.

BiPAP Vision Oxygen Module Regulator Filter and Regulator Bowl Compatibility

Note: Refer to the information below for compatibility when ordering Oxygen bowl and filter replacements.

Oxygen Module (OM) Manifold / Regulator Bowl

- For Oxygen Module S/N < 300000, use part number 582154
- For Oxygen Module S/N > 299999, use part number 1007546*

Oxygen Module (OM) Manifold / Regulator Bowl filter (x5)

- For Oxygen Module S/N < 300000, use part number 582153
- For Oxygen Module S/N > 299999, use part number 1007547*

* This part is also for the Oxygen Modules that do not have a serial number on the Oxygen Module cover.
5.5 Changing the System Fuses

WARNING: Unplug the BiPAP Vision before changing the fuses.

NOTE: This procedure applies to Vision S/N’s 100500 and greater.

Step 1 Unplug the AC power cord from the wall outlet and from the power entry module on the rear of the BiPAP Vision.

Step 2 With a small, flat-blade screwdriver, gently pry open the fuse holder door from the top. The door hinges downward.

Figure 5-5
Opening the Fuse Door

Step 3 Pry the fuse drawers loose and slide them out of the power entry module.

Step 4 Pull the fuses out of the fuse drawers.
Changing the System Fuses / Operating Voltage Selection (Continued)

Step 5 Replace both fuses.

Step 6 Place the new fuses in the fuse drawers and slide the fuse drawers back into the power entry module with the arrows on the front of the drawers pointing to the right.

Step 7 Select the proper operating voltage by removing the drum and reinserting it with the desired voltage displayed.

NOTE: Use only Respironics approved fuses. See Section 5.6 for fuse part numbers.

Step 8 Swing the fuse drawer door shut and snap it into place.

Step 9 Plug the AC power cord into the BiPAP Vision and the wall outlet.
5.6 Voltage and Fuse Selection

The voltage selection is originally set at the factory. If you wish to use the BiPAP Vision with a different operating voltage, refer to Section 5.5.

NOTE 1: Vision S / N’s 100500 and greater:
- For operating voltages of 100 and 120 VAC, use RI P/N 1000749 fuses.
- For operating voltages of 230 and 240 VAC, use RI P/N 1000750 fuses.

NOTE 2: Visions S / N’s 100499 and less:
- For operating voltage of 115 VAC, use RI P/N 582100 fuses.
- For operating voltage of 220 and 240 VAC, use RI P/N 1000750 fuses.

5.7 Power Cord Inspection

Inspect the power cord and replace if damaged or shows signs of wear.
5.8 Internal Alarm Battery

5.8.1 Battery Function

The BiPAP Vision contains an internal NiCAD battery located on the DC (P/N 1012819) to activate the Ventilator Inoperative visual and audible alarm indicators if an error occurs. A fully charged battery can maintain the audible alarm for up to 20 minutes.

5.8.2 Low Battery Condition

The NiCAD battery can lose its charge if the BiPAP Vision is not used for an extended time. In a typical environment, a fully charged battery can be stored approximately six months before losing its charge, but the discharge rate depends heavily on temperature.

NOTE: The BiPAP Vision internal alarm battery should be charged prior to use if it has been stored for longer than three months.

If the battery voltage is too low to support the alarm indicators, the Check Ventilator visual (Eye icon) and audible alarm indicators will activate. The time that the audible alarm operates may be short due to the low voltage of the battery. The BiPAP Vision also generates error code 205.

To check the error code:

Step 1 Silence the audible alarm component by pressing the Alarm Reset key. The audible component will not sound again.

Step 2 Press the Monitoring hard key if you are not already in the Monitoring screen.

Step 3 Press the Options soft key.

Step 4 In the Options screen, press the Error soft key. Check vent error codes are displayed in the top line of the Options/Message area.
5.8.3 Charging the Internal Battery

There are two methods used to recharge the NiCAD battery on the DCS circuit board that is used to sound the audible alarm, fast charge and normal.

1. Fast Charge Method (Check Vent/Error 205 Being Displayed)

A fast charge will be initiated at first time initialization and when a low internal battery error is detected. Fast charging is available when the unit is in the Setup Screen and when it is providing therapy (i.e., the unit can sit in the diagnostic mode and still fast charge). Fast charge time is 6 hours to sufficiently charge the battery to support the audible alarm for 20 minutes.

If the unit is powered off during a fast charge sequence, the sequence will pick up where it left off when the unit is powered back on unless a low battery error is detected during the start-up testing (i.e., the unit was off long enough to discharge the battery). In that case, a new 6-hour fast charge sequence will be initiated. The functionality of the Check Ventilator error 205 remains unchanged - the error code will be able to be cleared approximately 1 minute after the status indicates a good battery.

Note: If the status never indicates a good battery (i.e., the battery is actually bad and will not take a charge), the fast charge sequence will run continuously. The user will be able to detect this by not being able to clear the 205 error even after a full fast charge cycle.

Charging Process:

1. Remove the unit from patient use.
2. Plug the unit into an AC source and start the unit. The Self Diagnostics will begin.
3. Allow the unit to remain in the Exhalation Port/Language Screen.
4. Or, allow the unit to be in therapy or Standby mode. Press the alarm reset to silence the audible alarm.
5. Leave in one of these conditions for approximately 6 hours to fully charge the battery.

2. Normal Method (No Check Vent/Error 205)

If there is no Check Vent error 205, the charging circuit will continue to charge the battery on a regular basis while in the Test Exhalation/Language screen or during therapy use. It will take approximately 24 hours to fully charge the battery to support the audible alarm for up to twenty minutes.

Charging Process:

1. Remove the unit from patient use.
2. Plug the unit into an AC source and start the unit. The Self Diagnostics will begin.
3. Allow the unit to remain in the Exhalation Port/Language selection screen.
4. Or, allow the unit to be in therapy or Standby mode.
5. Leave in one of these conditions for approximately 24 hours to fully charge the battery.
Charging Verification:

1. A minimum of two hours is required to charge a fully discharged battery to a voltage at which the alarm will not be activated. At this time, the unit can be operated and will continue to trickle charge the battery while it is in operation.
2. Press Monitoring to begin operation.
3. Wait two minutes to determine if the Check Vent alarm activates with an error 205 in the Error Message screen. If not, then the unit is ready for use.

CAUTION: Prolonged storage of the BiPAP Vision at high temperatures, above 80°F (27°C) can result in premature battery failure. Failure to recharge a battery when it is being stored for long periods will cause a loss of battery life, activate the Check Ventilator alarm, and generate error code 205.
5.9 Preventive Maintenance Schedule

The Maintenance Schedule lists the items that are recommended to be periodically inspected or tested. The service interval may be decreased as internal protocol specifies. The user should be aware of any local or national regulations that may deviate from the schedule as described below. Use the log to record the dates the maintenance items are performed.

5.9.1 Vision Preventive Maintenance Schedule (Factory Recommended)

<table>
<thead>
<tr>
<th>Maintenance Item</th>
<th>Verification Reference</th>
<th>Service Interval</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record hours of operation</td>
<td>Displayed on Options Screen</td>
<td>1 Year</td>
<td></td>
</tr>
<tr>
<td>Replace inlet filter</td>
<td>Section 5.2</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Replace oxygen regulator filter</td>
<td>Section 5.4</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Audible Alarm</td>
<td>Visual, verify by activating Test Alarms.</td>
<td>1 Year</td>
<td></td>
</tr>
<tr>
<td>Run Blower Valve Calibration</td>
<td>Section 8.5</td>
<td>1 Year</td>
<td></td>
</tr>
<tr>
<td>Perform “System Final Test”</td>
<td>Section 8.8</td>
<td>1 Year</td>
<td></td>
</tr>
<tr>
<td>Inspect Power Cord</td>
<td>Section 5.7</td>
<td>As required</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td>Section 5.1</td>
<td>As required</td>
<td></td>
</tr>
</tbody>
</table>

Tested by: ________________________________ Date: _______________
Chapter 6: Troubleshooting

6.1 Overview ... 6-2
6.2 Description of System Alarms 6-5
6.3 Alarm Indicators ... 6-7
6.4 Troubleshooting ... 6-8
6.5 Check Vent Error Codes ... 6-12
6.6 Vent Inop Errors ... 6-14
Chapter 6: Troubleshooting

6.1 Overview

Purpose

This chapter outlines a general procedure for troubleshooting the BiPAP Vision. Problems shall be investigated to the major component or subassembly as indicated on the specific error code charts found in this chapter.

Process

Step 1 If a Patient Alarm activates and it is not possible to eliminate it, refer to the Alarm Descriptions beginning on page 6-8 for detailed descriptions, possible causes, and corrective action.

Step 2 If the Check Ventilator icon illuminates along with the audible alarm, refer to the Check Vent Error Flow Chart on page 6-12 for the recommended troubleshooting sequence to follow. Refer to the “Check Vent” Error Codes chart on page 6-13 for descriptions and possible corrective actions.

Step 3 If the Ventilator Inoperative icon illuminates along with the audible alarm, refer to the Vent Inop Errors Flow Charts on pages 6-14 and 6-15 for the recommended troubleshooting sequence to follow. Refer to the Common System (page 6-16), PC Specific (page 6-18), MC Specific (page 6-22), and the DC Specific (page 6-24) Error Codes Charts for descriptions and possible corrective actions.

Step 4 Use the chart on page 6-3 to diagnose Common System Level Problems.

Step 5 Use the “Error Codes Chart Abbreviation Definitions” on pages 6-25 and 6-26 for the definition of terms used throughout all of the Error Code Charts.

Step 6 Follow the PC/Laptop Setup Procedures in section 8.9 for the suggested method to check the error code for each subsystem. The procedure includes PC/Laptop setup guidelines.
Common System Level Problems

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The unit will not power on.</td>
<td>Power cord</td>
<td>Inspect power cord insertion or damage, replace.</td>
</tr>
<tr>
<td></td>
<td>Fuses</td>
<td>Inspect fuses, replace if blown.</td>
</tr>
<tr>
<td></td>
<td>PSS</td>
<td>Replace PSS.</td>
</tr>
<tr>
<td></td>
<td>Main power switch</td>
<td>Continuity test switch, replace.</td>
</tr>
<tr>
<td></td>
<td>AC Inlet</td>
<td>Replace AC Inlet.</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
<td>Replace transformer.</td>
</tr>
<tr>
<td></td>
<td>Verifying proper input voltage setting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermittent On / Off condition.</td>
<td>Power cord</td>
<td>Verify proper input voltage setting.</td>
</tr>
<tr>
<td>Main Power indicator blinks sporadically.</td>
<td>Main power switch</td>
<td>Inspect power cord insertion or damage, replace.</td>
</tr>
<tr>
<td></td>
<td>Loose connections</td>
<td>Continuity test, replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remove top cover, verify all wiring connections are properly inserted.</td>
</tr>
<tr>
<td>Display blank, power On.</td>
<td>LCD</td>
<td>Replace the LCD.</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>Replace the DC.</td>
</tr>
<tr>
<td>Fuses failing.</td>
<td>Fuses</td>
<td>Replace if failed.</td>
</tr>
<tr>
<td></td>
<td>Transformer</td>
<td>Disconnect transformer from the PSS, if fuses still failing, replace the transformer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the fuses and transformer are operational, replace the PSS.</td>
</tr>
</tbody>
</table>
Common System Level Problems

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet air temperature too warm.</td>
<td>High ambient temperature
Inlet filter
Blower
Transformer
PC</td>
<td>Reduce ambient temperature, re-locate unit.
Replace the inlet filter (See Chapter 5).</td>
</tr>
<tr>
<td>Noise</td>
<td>PC
ILFR
PRV
Blower</td>
<td>Perform the Blower / Valve Calibration Procedure (See Section 8.5).
Replace PC.
Replace the ILFR.
Replace the PRV.
Replace the Blower.</td>
</tr>
<tr>
<td>Touch pad not responding to selection.</td>
<td>Touch pad
DC</td>
<td>Check Connections
Replace touch pad.
Replace DC.</td>
</tr>
<tr>
<td>Rotary encoder does not adjust selection.</td>
<td>Rotary encoder
DC</td>
<td>Replace rotary encoder.
Replace DC.</td>
</tr>
<tr>
<td>Ventilator Inoperative icon (wrench) illuminated, and the audible alarm.</td>
<td></td>
<td>See Section 6.3.</td>
</tr>
<tr>
<td>Check Ventilator icon (eye) illuminated, and the audible alarm.</td>
<td></td>
<td>See Section 6.3.</td>
</tr>
</tbody>
</table>
6.2 Description of System Alarms

The BiPAP Vision incorporates self-diagnostic testing capabilities and a number of safety features. All system internal functions are checked automatically at start up and periodically throughout operation. The microprocessors continuously obtain readings from internal sensors to monitor machine functions and operating conditions. Device malfunctions or abnormal operating conditions are analyzed and reported according to the level of severity. Two primary alarm functions, Check Ventilator and Ventilator Inoperative, are available to identify a system malfunction. Patient Alarms are displayed on screen when activated.

6.2.1 Patient Alarm Indications

All alarms contain an audible and visual element. In the event of an alarm condition, the audible alarm sounds and the screen changes to show the alarm condition in the Mode/Message Area. See Figure 6-1.

![Patient Alarm Shown in Mode / Message Area](image)

*Figure 6-1
Patient Alarm Shown in Mode / Message Area*
6.2.2 Patient Alarm Silence and Reset

The audible indicator of most alarms is self-cancellable if the patient alarm condition is corrected. The user can silence the audible indicator by pressing the ALARM SILENCE hard key. The ALARM SILENCE hard key turns off the audible alarm for two minutes. Additional pressing of the ALARM SILENCE hard key has no effect on the alarm. When the alarm silence is active, the message “Alarm Silenced” appears in the Mode / Message Area for the duration of the silence period. Any new alarm condition that occurs, except for an Apnea alarm, during the silence period will provide a visual alert, but will not trigger the audible alarm.

The visual patient alarm indicator in the Mode / Message Area is cancelled only when the ALARM RESET hard key is pressed. The ALARM RESET hard key cancels the alarm silence period and resets the visual indicators. The alarm immediately reactivates if the condition causing the alarm has not been corrected.
6.3 Alarm Indicators

6.3.1 Vision Ventilator Inoperative Indicator

Purpose: Alerts the user to a machine malfunction by illuminating the red “Wrench” icon on the display panel and activating an audible alarm. The ventilator immediately powers down and opens the internal valves allowing ambient air to be drawn through the ventilator for unimpeded spontaneous breathing. The audible and visual alerts remain active and cannot be silenced until the On / Off Switch is placed in the OFF position.

Active: At all times.

6.3.2 Check Ventilator Indicator

Purpose: Alerts the user of a potential abnormal operating condition by illuminating the yellow “Eye” icon on the display panel and activating an audible alarm. The audible alarm can be temporarily silenced with the ALARM SILENCE hard key. However, the visual indicator cannot be reset and remains illuminated until the error is corrected. The ventilator continues to operate during a “Check Ventilator” condition.

Active: At all times.
6.4 Troubleshooting

<table>
<thead>
<tr>
<th>Alarm Display</th>
<th>Meaning</th>
<th>Description</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator Inoperative</td>
<td>System Failure – A system malfunction that results in machine shutdown. The system valves open to the atmosphere to permit unimpeded spontaneous breathing through the system. Audible and visual indicators are activated; once activated, the audible alarm cannot be silenced.</td>
<td>System level failure that impairs performance of the unit.</td>
<td>Refer to the Vent Inop Troubleshooting Flow Charts on pages 6-14 and 6-15 for diagnostic information.</td>
<td></td>
</tr>
<tr>
<td>Check Ventilator</td>
<td>Audible and visual indicators are activated. A system error has occurred. The Vision ventilator continues to operate.</td>
<td>System error.</td>
<td>Refer to the Check Vent Error Troubleshooting Chart on page 6-12 for diagnostic information.</td>
<td></td>
</tr>
<tr>
<td>Hi P</td>
<td>High Pressure</td>
<td>Audible and visual indicator in proximal airway pressure setting exceeds the high pressure setting for more than 0.5 seconds. The inspiration is terminated. Audible alarm indication cancels if the subsequent breath is below the high pressure setting.</td>
<td>Improper Alarm setting; alarm limit set below set pressure. Patient coughing during inspiratory cycle.</td>
<td>Review high pressure alarm setting. Observe patient.</td>
</tr>
</tbody>
</table>
Troubleshooting Chart

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoP</td>
<td>Low Pressure</td>
<td>Audible and visual alarm indicators if the proximal airway pressure remains below the low pressure setting for the time set with the Low Pressure Delay control. The audible alarm indicator cancels if the pressure rises above the low pressure setting.</td>
<td>Patient disconnect or large leak.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patient inspiratory demand exceeds machine-delivered flow.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low Pressure Delay set incorrectly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improper alarm setting; alarm limit set above set pressure.</td>
</tr>
<tr>
<td>Apnea</td>
<td>No spontaneous triggered breath detected within set apnea interval</td>
<td>Monitors spontaneous triggered breaths within user-selectable time interval. Time interval resets with each spontaneous trigger. If a spontaneous trigger is not detected within the selected apnea time interval, there is an audible and visual alarm indicator. The audible alarm indicator cancels when two consecutive spontaneous triggers are detected. The apnea alarm can be disabled. Audible and visual indicators if the minute</td>
<td>Patient not breathing or unable to trigger ventilator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reevaluate the patient and check the patient circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reevaluate the patient and alarm setting.</td>
</tr>
<tr>
<td>Exh. Port</td>
<td>Low leak during exhalation</td>
<td>Activated when the leak, during exhalation, falls 50% or 5 LPM, whichever is greater, below a limit for a period of one minute.</td>
<td>Block or restriction in the air flow pathway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check air flow pathway.</td>
</tr>
<tr>
<td>LoMin Vent</td>
<td>Low minute ventilation</td>
<td>Ventilation is below the alarm setting. The audible alarm indicator cancels if the patient minute ventilation increases above the alarm setting. Alarm can be disabled.</td>
<td>Patient disconnect or large leak.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decrease in patient rate or tidal volume.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improperly set alarm limit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reevaluate the patient and alarm settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reevaluate the patient and alarm settings.</td>
</tr>
<tr>
<td>Alarm Display</td>
<td>Meaning</td>
<td>Description</td>
<td>Possible Cause</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Hi Rate</td>
<td>High total breathing rate</td>
<td>Continuously compares the total breathing rate (machine + spontaneous) with the Hi Rate alarm setting. Audible and visual indicator if the measured value is higher than the alarm setting. The audible alarm self-cancels if the total breathing rate drops below the alarm setting.</td>
<td>Increase in patient breathing rate.</td>
</tr>
<tr>
<td>Lo Rate</td>
<td>Low total breathing rate</td>
<td>Continuously compares the total breathing rate (machine + spontaneous) with the Lo Rate alarm setting. Audible and visual indicator if the measured value is lower than the alarm setting. The audible alarm self-cancels if the total breathing rate increases above the alarm setting.</td>
<td>Decrease in patient breathing rate.</td>
</tr>
<tr>
<td>P Regulation</td>
<td>Loss of pressure regulation</td>
<td>Audible and visual indicators if the measured proximal pressure differs more than ± 5 cm H₂O of the set pressure for greater than 5 seconds. Audible self-cancels if the proximal pressure returns to within ± 5 cm H₂O of the set value. Alarm is automatically disabled when the unit goes into flow limit control.</td>
<td>Large leak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patient unable to trigger ventilator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improperly set alarm limit.</td>
</tr>
</tbody>
</table>

Troubleshooting Chart
Troubleshooting Chart

<table>
<thead>
<tr>
<th>Alarm Display</th>
<th>Meaning</th>
<th>Description</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProxLine Disc</td>
<td>Proximal pressure line disconnect</td>
<td>Audible and visual indicators if proximal pressure measures less than 1.0 cm H₂O for greater than 1.0 second. Audible alarm self-cancels if the measured proximal pressure is increased above 1.0 cm H₂O. Alarm is automatically disabled when the unit goes into flow limit control.</td>
<td>Proximal pressure line disconnection or obstruction.</td>
<td>Check the proximal pressure line.</td>
</tr>
<tr>
<td>O₂ Flow</td>
<td>Incorrect O₂ flow</td>
<td>System alarm that activates audible and visual indicators if the oxygen supply is lost. The audible alarm does not self-cancel after correction. During the alarm condition, the ventilator continues to function.</td>
<td>Insufficient oxygen supply pressure.</td>
<td>Check the oxygen supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obstructed O₂ inlet filter.</td>
<td>Check the oxygen regulator inlet filter; replace if necessary.</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Mask has been removed or excessive leak.</td>
<td>Audible and visual indicator if mask is removed or becomes dislodged enough to cause excessive leak. (see section 3.10) Audible self-cancels if leak is resolved.</td>
<td>Mask removed or dislodged.</td>
<td>Reapply mask.</td>
</tr>
</tbody>
</table>
6.5 Check Vent Error Codes

"Check Vent" Error Warning Light Illuminated

Press Monitoring, Options and Error Messages. The top error is the check vent code.

Refer to the "Check Vent" Error Codes Chart on pg 6-13 for definitions and corrective action.

Remove the Top Enclosure. Ensure Cables, Hoses, Mufflers, and Subsystems Are Properly Connected. Retry the Unit if Necessary.

Perform corrective action according to the code reported.

Verify the Problem is Eliminated.

Perform Testing according to the "Recommended Testing after Part(s) Replacement" found in Chapter 8

Figure 6-3
Check Vent Error Flow Chart
“Check Vent” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Definition</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>RTC failure on the MC</td>
<td>Real Time Clock failure on the MC</td>
<td>MC</td>
</tr>
<tr>
<td>101</td>
<td>MC NVRAM CRC error</td>
<td>MC Non-Volatile Random Access Memory Cyclic Redundancy Check error</td>
<td>MC</td>
</tr>
<tr>
<td>102</td>
<td>Backup battery failure on the MC</td>
<td>Backup battery for the NVRAM and RTC failure on the MC</td>
<td>MC</td>
</tr>
<tr>
<td>103</td>
<td>V ref failure on the MC</td>
<td>Reference voltage failure on the MC</td>
<td>MC</td>
</tr>
<tr>
<td>200</td>
<td>DC display voltage</td>
<td>Error detected in the display voltage on the DC</td>
<td>DC</td>
</tr>
<tr>
<td>201</td>
<td>DC audible alarm</td>
<td>Audible alarm current error detected on the DC</td>
<td>DC</td>
</tr>
<tr>
<td>202</td>
<td>DC Check Vent indicator</td>
<td>Check Vent indicator current error detected on the DC</td>
<td>DC</td>
</tr>
<tr>
<td>203</td>
<td>DC Vent Inop indicator</td>
<td>Vent Inop indicator current error detected on the DC</td>
<td>DC</td>
</tr>
<tr>
<td>204</td>
<td>DC backlight error</td>
<td>Backlight voltage error detected on the DC</td>
<td>DC</td>
</tr>
<tr>
<td>205</td>
<td>DC alarm battery</td>
<td>Alarm battery voltage low on the DC</td>
<td>Recharge battery (See Section 5.8.3)</td>
</tr>
<tr>
<td>206</td>
<td>Keypad Error</td>
<td>Key is held down too long (30 seconds)</td>
<td>Keypad, DC</td>
</tr>
<tr>
<td>300</td>
<td>Circulation fan</td>
<td>Circulation fan is not operational</td>
<td>Circulation fan</td>
</tr>
<tr>
<td>301</td>
<td>Invalid PC Calibration Data</td>
<td>Data not read successfully during installation</td>
<td>Blower Valve Cal, PC</td>
</tr>
<tr>
<td>303</td>
<td>Blower speed</td>
<td>Blower speed exceeds 16500 RPM</td>
<td>Blower PC</td>
</tr>
<tr>
<td>306</td>
<td>OM detection</td>
<td>PC detects OM originally present, but became disconnected during operation</td>
<td>OM cable OM PC</td>
</tr>
</tbody>
</table>
6.6 Vent Inop Errors
(Use when Vent Inop occurs and the unit operates afterwards)

Error Indicated on Vision Display

NOTE: When checking for Vent Inop Errors, make sure that errors on the PC, MC and DC are noted. If any indicate a hardware or therapy delivery suspected problem, follow this course of action.

"Vent Inop" Error (Wrench Icon)

- Verify Input Voltage and/or Connection
- Turn On the Unit and Access the Error Message Screen. Note the Subsystem and Error Message Indicated.
- Refer to the Common System Error Codes Chart on pg. 6-17 for Description and Corrective Action.
- Refer to the PC Specific Error Codes Chart on pg. 6-19 for Description and Corrective Action.
- Refer to the MC Specific Error Codes Chart on pg. 6-23 for Description and Corrective Action.
- Refer to the DC Specific Error Codes Chart on pg. 6-27 for Description and Corrective Action.
- Remove the Top Enclosure (Refer to Chp. 7 for Details). Ensure that all Interconnecting Cables and Hoses Are Properly Attached. Retry the Unit if Necessary.
- Perform the Corrective Action Indicated in the Error Chart. Use the Replacement Procedures Found in Chp. 7, if Necessary.
- Verify that the Problem Is Resolved. Install the Top Enclosure.
- Perform Testing as Called Out in the "Recommended Testing after Part(s) Replacement" Chart (Chp. 8).

Figure 6-4
Vent Inop Indicator Troubleshooting Flow Chart
Error Indicated PC/Laptop
(use when “Ventilator Inoperative” is continuously activated)

NOTE: When checking for Vent Inop Errors, make sure that errors on the PC, MC and DC are noted. If any indicate a hardware or therapy delivery suspected problem, follow this course of action.

Figure 6-5
Vent Inop Indicator Troubleshooting Flow Chart
Common System “Vent Inop” Errors

<table>
<thead>
<tr>
<th>MC</th>
<th>DC</th>
<th>PC</th>
<th>Error Definition</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Hardware Failure</td>
<td>Subsystem detects a hardware failure</td>
<td>Refer to error reported on other subsystem</td>
</tr>
<tr>
<td>601</td>
<td>E01</td>
<td>1601</td>
<td>Spurious interrupt</td>
<td>MCU detects spurious interrupt</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>602</td>
<td>E02</td>
<td>1602</td>
<td>Unassigned interrupt</td>
<td>MCU detects unassigned interrupt</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>603</td>
<td>E03</td>
<td>1603</td>
<td>Bus interrupt</td>
<td>MCU detects bus interrupt</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>604</td>
<td>E04</td>
<td>1604</td>
<td>Illegal instruction</td>
<td>MCU detects illegal instruction executed</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>605</td>
<td>E05</td>
<td>1605</td>
<td>Breakpoint error</td>
<td>MCU detects breakpoint error</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>606</td>
<td>E06</td>
<td>1606</td>
<td>Divide by zero</td>
<td>MCU detects divide by zero</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>607</td>
<td>E07</td>
<td>1607</td>
<td>Uninitialized interrupt</td>
<td>MCU detects uninitialized interrupt</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>608</td>
<td>E08</td>
<td>1608</td>
<td>Software interrupt</td>
<td>MCU detects software interrupt executed</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>609</td>
<td>E09</td>
<td>1609</td>
<td>Unused interrupt</td>
<td>MCU detects unused interrupt executed</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>60A</td>
<td>E0A</td>
<td>160A</td>
<td>ROM CRC error</td>
<td>EPROM corrupted (stored CRC does not match calculated CRC)</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>60C</td>
<td>N/A</td>
<td>N/A</td>
<td>Bad MC state</td>
<td>Invalid data on “MC state” signal</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>60E</td>
<td>E0E</td>
<td>160E</td>
<td>Watchdog failure</td>
<td>Watchdog circuitry failure (software continues after long delay in watchdog timer test)</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>614</td>
<td>E14</td>
<td>1614</td>
<td>Walking RAM test error</td>
<td>Pattern read from RAM doesn’t match pattern written (RAM hardware problem)</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>616</td>
<td>E16</td>
<td>1616</td>
<td>Watchdog reset after Watchdog test</td>
<td>Power-on reset occurred after Watchdog test</td>
<td>Subsystem with LED lit Alarm PAL on MC</td>
</tr>
<tr>
<td>617</td>
<td>E17</td>
<td>1617</td>
<td>test SCI failed</td>
<td>completed SCI register not ready for a character to be output</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>700</td>
<td>F00</td>
<td>1700</td>
<td>CRC error on third send to DC – MC</td>
<td>after a delay loop of one flip-flop iterations Calculated CRC does not match transmitted CRC on third try</td>
<td>ICB cable DC MC PC</td>
</tr>
<tr>
<td>701</td>
<td>F01</td>
<td>1701</td>
<td>NAK received on third send to DC-MC</td>
<td>Negative Acknowledgment message received on third try</td>
<td>ICB cable DC MC PC</td>
</tr>
<tr>
<td>702</td>
<td>F02</td>
<td>1702</td>
<td>Tack timeout on third send to DC-MC</td>
<td>Tack not received on last byte sent within 750 usecs</td>
<td>ICB cable DC MC PC</td>
</tr>
</tbody>
</table>
Common System “Vent Inop” Errors

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Code</th>
<th>Error Code</th>
<th>Error Description</th>
<th>Error Description</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>703</td>
<td>F03</td>
<td>1703</td>
<td>Trply timeout on third send to DC-MC</td>
<td>Slave did not start responding within one msec of last byte sent from MC</td>
<td>ICB cable DC MC PC</td>
</tr>
<tr>
<td>N/A</td>
<td>F04</td>
<td>1704</td>
<td>MC timeout from slave</td>
<td>MC did not request data from slave within 15 msecs</td>
<td>MC/PC (if code exist)</td>
</tr>
<tr>
<td>705</td>
<td>F05</td>
<td>1705</td>
<td>Packet does not fit in message</td>
<td>Buffer in “Move Packet To Message” is out of room</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>706</td>
<td>F06</td>
<td>1706</td>
<td>Invalid timer value</td>
<td>Timers not initialized before this call or invalid data on the timer parameter</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>707</td>
<td>F07</td>
<td>1707</td>
<td>Invalid delay value</td>
<td>Timers not initialized before this call or requested delay is greater than one minute (prevents rollover)</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>708</td>
<td>F08</td>
<td>1708</td>
<td>Invalid delay (usec)</td>
<td>Timers not initialized before this call or requested delay is greater than 85 usecs (use “Delay” for larger delays)</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>709</td>
<td>F09</td>
<td>1709</td>
<td>GPT not initialized</td>
<td>GPT not initialized before call to Initiate Timers is made</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>70A</td>
<td>F0A</td>
<td>170A</td>
<td>Invalid usec ticks</td>
<td>Timers not initialized before this call or PCsed parameter to large (greater than 62499 prevents rollover)</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>70B</td>
<td>F0B</td>
<td>170B</td>
<td>Invalid priority level</td>
<td>PCsed priority level value has invalid data</td>
<td>Subsystem with LED lit</td>
</tr>
<tr>
<td>70C</td>
<td>N/A</td>
<td>N/A</td>
<td>CRC error on third send to PC</td>
<td>Calculated CRC does not match transmitted CRC on third try</td>
<td>ICB cable PC DC MC</td>
</tr>
<tr>
<td>70D</td>
<td>N/A</td>
<td>N/A</td>
<td>NAK received on third send to PC</td>
<td>NAK received on third try</td>
<td>ICB cable PC DC MC</td>
</tr>
<tr>
<td>70E</td>
<td>N/A</td>
<td>N/A</td>
<td>Tack timeout on third send to PC</td>
<td>Tack not received on last byte sent to PC within 750 usecs</td>
<td>ICB cable PC DC MC</td>
</tr>
<tr>
<td>70F</td>
<td>N/A</td>
<td>N/A</td>
<td>Trply timeout on third to PC</td>
<td>PC did not start responding within one msec of last byte sent from MC</td>
<td>ICB cable PC DC MC</td>
</tr>
<tr>
<td>FFFF</td>
<td>FFFF</td>
<td>FFFF</td>
<td>Illegal Error Report</td>
<td>Software recognized an extra data bit</td>
<td>No Action Required</td>
</tr>
</tbody>
</table>
PC Specific “Vent Inop” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201</td>
<td>ADC timeout</td>
<td>After read of internal ADC, incomplete conversion occurred after a 173 us delay. (ILFR, PRV, O₂, ANA ground, Vref)</td>
<td>PC</td>
</tr>
<tr>
<td>1202</td>
<td>Blower speed test fail</td>
<td>Invalid data in the “blower test status” signal</td>
<td>PC</td>
</tr>
<tr>
<td>1203</td>
<td>Error controlling operational tests</td>
<td>Invalid data in the “test case primary” and “test case secondary” signals</td>
<td>PC</td>
</tr>
<tr>
<td>1204</td>
<td>MUX voltage error</td>
<td>Invalid data in the “MUX channel” parameter</td>
<td>PC</td>
</tr>
<tr>
<td>1205</td>
<td>Other voltage error</td>
<td>Invalid data in the “channel” parameter</td>
<td>PC</td>
</tr>
<tr>
<td>1206</td>
<td>IADC failed</td>
<td>Internal ADC did not complete sequence before background sensors are read</td>
<td>PC</td>
</tr>
<tr>
<td>1207</td>
<td>MC did not communicate within start-up time</td>
<td>MC did not request status within 30 seconds of PC starting</td>
<td>ICB cable, MC, PC, DC</td>
</tr>
<tr>
<td>1208</td>
<td>12 volts voltage reference test failed - operational</td>
<td>12 volt signal read from MUX is less than 11 volts or greater than 13 volts</td>
<td>PC</td>
</tr>
<tr>
<td>120A</td>
<td>Bulk supply voltage reference test failed - operational</td>
<td>Bulk supply signal read from MUX is less than 20 volts or greater than 38.88 volts</td>
<td>PC</td>
</tr>
<tr>
<td>120B</td>
<td>–12 volts voltage reference test failed - operational</td>
<td>–12 volt signal read from MUX is less than –13 volts or greater than –11 volts</td>
<td>PC</td>
</tr>
<tr>
<td>120C</td>
<td>–5 volts voltage reference test failed - operational</td>
<td>–5 volt signal read from MUX is less than –5.425 volts or greater than –4.547</td>
<td>PC</td>
</tr>
<tr>
<td>120D</td>
<td>Reference Voltage test</td>
<td>Voltage reference signal read from MUX is less than 3.749 volts or greater than 4.445 volts</td>
<td>PC</td>
</tr>
<tr>
<td>120E</td>
<td>failed - operational</td>
<td>Queued Serial Module failed</td>
<td>PC</td>
</tr>
<tr>
<td>120F</td>
<td>Error in rise rate processing</td>
<td>The Rise Rate information in the MC to PC message not within range (0-4)</td>
<td>ICB cable, PC, MC, DC</td>
</tr>
<tr>
<td>1210</td>
<td>Blower voltage bad in safe state</td>
<td>Blower drive voltage read from MUX is greater than 15 mV</td>
<td>PC</td>
</tr>
<tr>
<td>1211</td>
<td>PRV voltage bad in safe state</td>
<td>PRV drive voltage read from internal ADC is greater than 15 mV</td>
<td>PC</td>
</tr>
<tr>
<td>1212</td>
<td>IL FR voltage bad in safe state</td>
<td>ILFR drive voltage read from internal ADC is greater than 15 mV</td>
<td>PC</td>
</tr>
<tr>
<td>1213</td>
<td>O₂ valve voltage bad in safe state</td>
<td>Oxygen module drive voltage read from Internal ADC is greater than 15 mV</td>
<td>PC</td>
</tr>
<tr>
<td>1214</td>
<td>Failure controlling start-up tests</td>
<td>Invalid data in “test case’</td>
<td>PC</td>
</tr>
<tr>
<td>1215</td>
<td>12 volts voltage reference test failed - start-up</td>
<td>12 volt signal read from MUX is less than 10.12 volts or greater than 14.04 volts</td>
<td>PC</td>
</tr>
<tr>
<td>1216</td>
<td>ANA ground voltage reference test failed - start-up</td>
<td>ANA and signal read from MUX is less than 0 mV or greater than 500 mV</td>
<td>PC</td>
</tr>
<tr>
<td>1217</td>
<td>Bulk supply voltage reference test failed - start-up</td>
<td>Bulk supply signal read from MUX is less than 18.4 V or greater than 38.88 V</td>
<td>PC</td>
</tr>
</tbody>
</table>
PC Specific “Vent Inop” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Error Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1218</td>
<td>-12 volts voltage reference test failed - start-up</td>
<td>PC</td>
</tr>
<tr>
<td>1219</td>
<td>-5 volts voltage reference test failed - start-up</td>
<td>PC</td>
</tr>
<tr>
<td>121A</td>
<td>Reference Voltage test failed - start-up</td>
<td>PC</td>
</tr>
<tr>
<td>121B</td>
<td>Blower voltage reference bad - start-up</td>
<td>PC</td>
</tr>
<tr>
<td>121C</td>
<td>ILFR voltage reference bad - start-up</td>
<td>PC</td>
</tr>
<tr>
<td>121D</td>
<td>(O_2) valve voltage reference bad - start-up</td>
<td>PC</td>
</tr>
<tr>
<td>121E</td>
<td>PRV voltage reference bad - operational</td>
<td>PC</td>
</tr>
<tr>
<td>121F</td>
<td>Blower voltage reference bad - operational</td>
<td>PC</td>
</tr>
<tr>
<td>122A</td>
<td>Corrupted Resistance Table</td>
<td>PC</td>
</tr>
<tr>
<td>122B</td>
<td>Invalid Mode</td>
<td>PC needs</td>
</tr>
<tr>
<td></td>
<td>Selected mode not supported in software - Software Error</td>
<td>PAV / T EPROM</td>
</tr>
<tr>
<td>122C</td>
<td>Blower Failure</td>
<td>PC, Blower</td>
</tr>
<tr>
<td>122D</td>
<td>Bad Backup unit outlet pressure sensor</td>
<td>PC</td>
</tr>
<tr>
<td>122E</td>
<td>Unit outlet difference</td>
<td>PC, AFM, PSS</td>
</tr>
<tr>
<td>122F</td>
<td>Stuck backup unit outlet pressure sensor</td>
<td>PC</td>
</tr>
<tr>
<td>1220</td>
<td>ILFR voltage reference bad - operational</td>
<td>PC</td>
</tr>
<tr>
<td>1221</td>
<td>(O_2) valve voltage reference bad - operational</td>
<td>PC</td>
</tr>
<tr>
<td>1222</td>
<td>PRV voltage reference bad - operational</td>
<td>PC</td>
</tr>
<tr>
<td>1225</td>
<td>Internal ADC calibration divide by zero</td>
<td>PC</td>
</tr>
<tr>
<td>1226</td>
<td>Bad (O_2) temperature sensor</td>
<td>OM</td>
</tr>
<tr>
<td>1227</td>
<td>Blower out of calibration / stuck motor</td>
<td>Blower PC</td>
</tr>
<tr>
<td>1228</td>
<td>Bad pressure setpoint calculated</td>
<td>PC</td>
</tr>
<tr>
<td>1229</td>
<td>Patient pressure sensor drift error</td>
<td>PC</td>
</tr>
<tr>
<td>1230</td>
<td>Voltage Failure</td>
<td>PC</td>
</tr>
</tbody>
</table>
PC Specific “Vent Inop” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>Bad AFM calibration</td>
<td>AFM calibration data all zeroes or CRC bad</td>
<td>AFM</td>
</tr>
<tr>
<td>1301</td>
<td>Bad O₂ module calibration data CRC</td>
<td>OM calibration all zeroes or CRC bad</td>
<td>OM</td>
</tr>
<tr>
<td>1302</td>
<td>Bad PC calibration data CRC</td>
<td>PC calibration data all zeroes or CRC bad</td>
<td>PC</td>
</tr>
<tr>
<td>1304</td>
<td>QSM timeout</td>
<td>QSPI not finished after 100 usecs after selection of EEPROM for reading of actual read</td>
<td>PC</td>
</tr>
<tr>
<td>1305</td>
<td>No AFM</td>
<td>AFM detection signal, supplied by hardware, is greater than 300 mV (cut off for AFM being present)</td>
<td>AFM cable AFM PC</td>
</tr>
<tr>
<td>1308</td>
<td>Bad pressure setpoint message from MC</td>
<td>MC commanded pressure in message is greater than 40 cm H₂O</td>
<td>ICB cable MC PC DC</td>
</tr>
<tr>
<td>1309</td>
<td>Bad rise rate message from MC</td>
<td>Rise rate setpoint in MC message is greater than four (4)</td>
<td>ICB cable MC PC DC</td>
</tr>
<tr>
<td>130A</td>
<td>Bad IPAP setpoint message from MC</td>
<td>IPAP pressure setpoint in the MC message is greater than 40 cm H₂O (non-PAV) or 50 cm H₂O (PAV)</td>
<td>ICB cable MC PC DC</td>
</tr>
<tr>
<td>130B</td>
<td>Bad O₂ concentration setpoint message from MC</td>
<td>Oxygen concentration in the MC message is less than 21 or greater than 100</td>
<td>ICB cable MC PC DC</td>
</tr>
<tr>
<td>130C</td>
<td>Invalid MC message</td>
<td>Byte count in message not equal to expected byte count</td>
<td>ICB cable MC PC DC</td>
</tr>
<tr>
<td>1312</td>
<td>AFM detect conversion cannot be done</td>
<td>Read of ADC not completed in time for the AFM detection read</td>
<td>AFM cable AFM PC</td>
</tr>
</tbody>
</table>
PC Specific “Vent Inop” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Read Description</th>
<th>OM cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1313</td>
<td>OM detect conversion cannot be done</td>
<td>Read of ADC not completed in time for OM detection read</td>
<td>OM, PC, AM</td>
</tr>
<tr>
<td>1316</td>
<td>Stuck absolute atmospheric pressure sensor</td>
<td>Sensor reading is less than 20 in. HG or greater than 40 in. HG for 2.5 seconds</td>
<td>PC</td>
</tr>
<tr>
<td>1317</td>
<td>Stuck unit outlet pressure</td>
<td>Sensor reading is less than –5 cm H₂O or greater than 70 cm H₂O for 2.5 seconds</td>
<td>AFM</td>
</tr>
<tr>
<td>1318</td>
<td>Stuck patient pressure sensor</td>
<td>Sensor reading is less than –5 cm H₂O or greater than 50 cm H₂O for 2.5 seconds</td>
<td>PC</td>
</tr>
<tr>
<td>1319</td>
<td>Stuck total flow sensor</td>
<td>Sensor reading is less than –200 LPM or greater than 300 LPM</td>
<td>AFM</td>
</tr>
<tr>
<td>131A</td>
<td>Stuck O₂ flow sensor</td>
<td>Sensor reading is greater than 120 LPM for 2.5 seconds</td>
<td>OM</td>
</tr>
<tr>
<td>131B</td>
<td>Bad air temperature sensor</td>
<td>Air temperature out of range (40 - 160° F) for 2500 counts, conversion not complete</td>
<td>AFM</td>
</tr>
<tr>
<td>131C</td>
<td>ATM detected bad unit outlet pressure sensor</td>
<td>(High ATM - Low ATM) × 100 is greater than or equal to (5 × High ATM)</td>
<td>PC</td>
</tr>
<tr>
<td>131D</td>
<td>Bad calibration data 2 CRC</td>
<td>PC calibration data 2 CRC is bad after filling with either default values or calculated data and reading them back out</td>
<td>PC</td>
</tr>
<tr>
<td>131E</td>
<td>Bad PC calibration data 3 CRC</td>
<td>PC calibration data 3 CRC is bad after filling with default values and read them back out</td>
<td>PC</td>
</tr>
<tr>
<td>131F</td>
<td>Error in drift tests</td>
<td>Invalid data in “drift test case”</td>
<td>PC</td>
</tr>
<tr>
<td>1320</td>
<td>Bad AFM drift calibration data CRC</td>
<td>AFM calibration data 1 CRC is bad after filling with either default values or calculated values and read them back out</td>
<td>AFM</td>
</tr>
<tr>
<td>1321</td>
<td>Bad PC calibration</td>
<td>PC calibration data 4 CRC is bad after filling with either default values or calculated data and read them back</td>
<td>PC</td>
</tr>
<tr>
<td>1322</td>
<td>Sensor drift failure</td>
<td>Unit outlet or pressure sensor out of range (Tolerance + 2 cm H₂O around nominal)</td>
<td>AFM</td>
</tr>
<tr>
<td>1323</td>
<td>Bad Calibration data 6 CRC</td>
<td>Drift Data could not be updated</td>
<td>PC</td>
</tr>
<tr>
<td>1324</td>
<td>Bad OM drift calibration data CRC</td>
<td>OM calibration data 1 CRC is bad after filling with either default values or calculated data and reading them back</td>
<td>OM, OM, PAS</td>
</tr>
<tr>
<td>1325</td>
<td>Total Flow Sensor Drift</td>
<td>Total Flow sensor drifted too much</td>
<td>AFM</td>
</tr>
<tr>
<td>1326</td>
<td>Oxygen Flow Sensor Drift</td>
<td>Oxygen Flow sensor drifted too much</td>
<td>OM, OM, PAS</td>
</tr>
<tr>
<td>Code</td>
<td>Error Definition</td>
<td>Description</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>206</td>
<td>RTC test error</td>
<td>Invalid data on the “RTC case” signal or SPI time-out when attempting to get time</td>
<td>MC</td>
</tr>
<tr>
<td>207</td>
<td>Illegal Operational Test</td>
<td>Requested test does not exist</td>
<td>MC</td>
</tr>
<tr>
<td>209</td>
<td>+12 volt out of range</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>20A</td>
<td>-12 volt out of range</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>20B</td>
<td>+24 volt value out of range</td>
<td>ACC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>20C</td>
<td>Reference voltage value out of range</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>20D</td>
<td>ADC could not return +12 volt value</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>20E</td>
<td>ADC could not return-12 volt range</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>20F</td>
<td>ADC could not return +24 volt value</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>210</td>
<td>ADC could not return Reference Voltage Value</td>
<td>ADC voltage test</td>
<td>MC</td>
</tr>
<tr>
<td>211</td>
<td>Power Fail without AC Fail</td>
<td>Loss of bulk supply without loss of AC input caused by PS1 trip</td>
<td>MC PSS PC</td>
</tr>
<tr>
<td>301</td>
<td>Invalid byte count in DCS message</td>
<td>Byte count from DCS not within range (greater than 0)</td>
<td>ICB cable DC MC</td>
</tr>
<tr>
<td>304</td>
<td>Divide by zero in sum total breaths calculation</td>
<td>Calculation error</td>
<td>MC</td>
</tr>
<tr>
<td>305</td>
<td>Divide by zero in baseline error calculation</td>
<td>Clock cycle times per breath = 0</td>
<td>MC</td>
</tr>
<tr>
<td>306</td>
<td>Divide by zero in calc. BPM / Min Vent calc.</td>
<td>Sum total time = 0</td>
<td>MC</td>
</tr>
</tbody>
</table>
MC Specific “Vent Inop” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>307</td>
<td>Divide by zero in Ti/Tot calculation</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30A</td>
<td>MC scan cannot be performed (overflow of 10 msecs process)</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30B</td>
<td>Invalid command for CPAP mode</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30C</td>
<td>Invalid command for S/T mode</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30D</td>
<td>Invalid command for PAV/T mode</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30E</td>
<td>No dispatch function</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>310</td>
<td>Invalid mode update</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>311</td>
<td>Invalid alarm module</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>312</td>
<td>MC Scan Overruns</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>313</td>
<td>PAV/T Security failure</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>314</td>
<td>Illegal alarm module</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>315</td>
<td>Illegal mode update</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>316</td>
<td>Illegal S/T state</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>317</td>
<td>Illegal PAV state</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>318</td>
<td>Illegal mode</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
</tbody>
</table>

Code Error Definition

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Definition</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>307</td>
<td>Divide by zero in Ti/Tot calculation</td>
<td>Response task did not complete processing before 10 msecs interrupt occurred again</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30A</td>
<td>MC scan did not complete processing before 10 msecs interrupt occurred again</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30B</td>
<td>Received command ID from DC for some CPAP or PAV/T mode</td>
<td>Hardware returns something other than built-in Module B response</td>
<td>Contact Respironics Technical Service</td>
</tr>
<tr>
<td>30C</td>
<td>Received command ID from DC for some CPAP or PAV/T mode</td>
<td>Response task did not complete processing before 10 msecs interrupt occurred again</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30D</td>
<td>Received command ID from DC for some CPAP or PAV/T mode</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>30E</td>
<td>No dispatch function</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>310</td>
<td>Invalid mode update</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>311</td>
<td>Invalid alarm module</td>
<td>Response task did not complete processing before 10 msecs interrupt occurred again</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>312</td>
<td>MC Scan Overruns</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>313</td>
<td>PAV/T Security failure</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>314</td>
<td>Illegal alarm module</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>315</td>
<td>Illegal mode update</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>316</td>
<td>Illegal S/T state</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>317</td>
<td>Illegal PAV state</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
<tr>
<td>318</td>
<td>Illegal mode</td>
<td>Command ID from DC not recognized</td>
<td>Replace in order until the problem is corrected.</td>
</tr>
</tbody>
</table>

Corrective Action

- Replace in order until the problem is corrected.
DC Specific “Vent Inop” Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Definition</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>B00</td>
<td>Bad ICB message from MC</td>
<td>Status in self-test message not valid, Byte count in message greater than 125, command ID not recognized.</td>
<td>ICB cable DC MC PC</td>
</tr>
<tr>
<td>B01</td>
<td>Bad download sequence from MC</td>
<td>DC received download message when not expecting it</td>
<td>ICB cable DC MC PC</td>
</tr>
<tr>
<td>B02</td>
<td>Bad mode</td>
<td>Invalid data in “test mode” and “test mode” signals. Mode-specific messages received in the wrong mode</td>
<td>DC</td>
</tr>
<tr>
<td>B03</td>
<td>Error decoding hard key table</td>
<td>ICB message corresponding to selected hard key not valid</td>
<td>DC</td>
</tr>
<tr>
<td>B04</td>
<td>Bad screen state</td>
<td>Receive soft key selection for mode when impossible (illegal entry into process key stroke function)</td>
<td>DC</td>
</tr>
<tr>
<td>B09</td>
<td>Simultaneous failure of audible</td>
<td>Simultaneous failure of Vent Inop LED and Audible Alarm as alarm and system error LED indicated by hardware</td>
<td>DC</td>
</tr>
<tr>
<td>B0A</td>
<td>MC did not start communication within start-up time</td>
<td>MC did not send status request within 30 seconds of the DCS starting up</td>
<td>MC DC</td>
</tr>
<tr>
<td>B0B</td>
<td>Bad font type</td>
<td>Invalid data on the “G screen font type” signal</td>
<td>DC</td>
</tr>
<tr>
<td>B0C</td>
<td>Bad video memory address</td>
<td>Calculated screen pixel to which to begin writing is too large (off the screen)</td>
<td>DC</td>
</tr>
<tr>
<td>B0D</td>
<td>DC queue overflow</td>
<td>No room in the display queue for incoming MC message (background not running often enough)</td>
<td>DC</td>
</tr>
<tr>
<td>B0E</td>
<td>Bad graph size</td>
<td>X length or Y length is less than or equal to zero (invalid memory data)</td>
<td>DC</td>
</tr>
<tr>
<td>B0F</td>
<td>No graph structure available</td>
<td>An attempt is being made to initialize a fourth graph</td>
<td>DC</td>
</tr>
<tr>
<td>B10</td>
<td>Spurious keypad interrupts</td>
<td>More than ten keypad interrupts in a row with no key depressed</td>
<td>Touch pad DC</td>
</tr>
<tr>
<td>11D7</td>
<td>Invalid start-up test</td>
<td>Invalid “test case” data</td>
<td>DC</td>
</tr>
<tr>
<td>11D8</td>
<td>Invalid BIST test</td>
<td>Invalid “Built-In Self Test” case data</td>
<td>DC</td>
</tr>
<tr>
<td>11D1</td>
<td>Keypad Error</td>
<td>Key is pressed during start-up tests or held down too long (10 sec.)</td>
<td>Touchpad DC</td>
</tr>
</tbody>
</table>
Error Codes Chart Abbreviation Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AFM</td>
<td>Air Flow Module</td>
</tr>
<tr>
<td>ANA</td>
<td>Analog</td>
</tr>
<tr>
<td>ATM</td>
<td>Atmospheric</td>
</tr>
<tr>
<td>BIST</td>
<td>Built-In Self Test</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>DC</td>
<td>Display Control</td>
</tr>
<tr>
<td>EPROM</td>
<td>Electrically Programmable Read Only Memory</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>GPT</td>
<td>General Purpose Timer</td>
</tr>
<tr>
<td>IADC</td>
<td>Internal Analog to Digital Converter</td>
</tr>
<tr>
<td>ICB</td>
<td>Intermodule Communications Bus</td>
</tr>
<tr>
<td>ILFR</td>
<td>In-Line Flow Restrictor</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LPF</td>
<td>Low PCs Filter</td>
</tr>
<tr>
<td>MC</td>
<td>Main Control</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller Unit</td>
</tr>
<tr>
<td>MP</td>
<td>Microprocessor</td>
</tr>
<tr>
<td>MUX</td>
<td>Multiplexer</td>
</tr>
<tr>
<td>NAK</td>
<td>Negative Acknowledgment</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Non-Volatile Random Access Memory</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OM</td>
<td>Oxygen Module</td>
</tr>
</tbody>
</table>
Error Codes Chart Abbreviation Definitions (Continued)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Pressure Control</td>
</tr>
<tr>
<td>PAV</td>
<td>Proportional Assist Ventilation</td>
</tr>
<tr>
<td>PAV/T</td>
<td>Proportional Assist Ventilation / Timed</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Release Valve</td>
</tr>
<tr>
<td>QSM</td>
<td>Queued Serial Module</td>
</tr>
<tr>
<td>QSP</td>
<td>Queued Serial Peripheral Interface</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>RTC</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>SCI</td>
<td>Serial Interface</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>Tack</td>
<td>Acknowledge Timer</td>
</tr>
<tr>
<td>Trply</td>
<td>Reply Timer</td>
</tr>
<tr>
<td>Vref</td>
<td>Voltage Reference</td>
</tr>
</tbody>
</table>
Chapter 7: Repair and Replacement

7.1 Contact Information .. 7-2
7.2 Exploded View .. 7-3
7.3 BiPAP Vision Repair Kits .. 7-5
7.4 Mobile Stand II and III Repair Parts 7-10
7.5 Replacement Identification Photos .. 7-11
7.6 Touch Pad Replacement Instructions 7-59
Chapter 7: Repair and Replacement

7.1 Contact Information

Figures 7-1 and 7-2 list the names and identify the locations of major replaceable components in the BiPAP Vision. These drawings provide a quick reference and overview of the unit.

Note: Refer to Section 8.2 for testing that is required after items are replaced.

For replacement part ordering information, technical or clinical assistance contact Respironics Customer Service at:

U.S. and Canada

- Parts Ordering: 1-800-345-6443
- Fax: 1-800-886-0245

- Technical Support: 1-800-345-6443
- Fax: 1-724-387-5236

International (Parts or Technical Assistance)

- Phone: 1-724-387-4000
- Fax: 1-724-387-5012

E-Mail Technical Assistance service@respironics.com

Visit Respironics Home Page on the World Wide Web at:

http://www.respironics.com
7.2 Exploded View

Figure 7-1
BiPAP Vision Ventilator Component Location and Identification
Exploded View (Continued)

Figure 7-2
Front Panel Assembly Exploded View

* Not available as a repair kit, contact Technical Support for assistance.
7.3 BiPAP Vision Repair Kits

<table>
<thead>
<tr>
<th>Replacement Kit</th>
<th>Replacement Part No.</th>
<th>Photo Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Inlet (includes power inlet filter)</td>
<td>582138</td>
<td>7-13,7-14</td>
</tr>
<tr>
<td>AC Power Cord (North American)</td>
<td>362435</td>
<td>Not Shown</td>
</tr>
<tr>
<td>AC Power Cord Clamp</td>
<td>1000751</td>
<td>7-13,7-43</td>
</tr>
<tr>
<td>Airflow Module (AFM)</td>
<td>582127</td>
<td>7-19,7-31,7-37</td>
</tr>
<tr>
<td>Alarm Module (Optional)</td>
<td>582158</td>
<td>7-36</td>
</tr>
<tr>
<td>Audible Alarm</td>
<td>1000743</td>
<td>7-19,7-30,7-31</td>
</tr>
<tr>
<td>Backlight</td>
<td>1014432</td>
<td>7-56</td>
</tr>
<tr>
<td>Battery, (MC board) S/N >106K (See Note 8)</td>
<td>1006005</td>
<td>7-36</td>
</tr>
<tr>
<td>Battery, Lithium (MC board) S/N<106K (See Note 8)</td>
<td>1001988</td>
<td>7-53</td>
</tr>
<tr>
<td>Battery (DC, Alarm)</td>
<td>1012819</td>
<td>7-17</td>
</tr>
<tr>
<td>Blower Assembly</td>
<td>582128</td>
<td>7-20,7-21</td>
</tr>
<tr>
<td>Blower Muffler</td>
<td>582129</td>
<td>7-20</td>
</tr>
<tr>
<td>Blower Valve Coupler</td>
<td>1003728</td>
<td>7-26,7-57</td>
</tr>
<tr>
<td>Blower Vibration Isolator (x3)</td>
<td>1003893</td>
<td>7-21</td>
</tr>
<tr>
<td>Bottom Enclosure S/N < 106K</td>
<td>582130</td>
<td>7-43,7-55</td>
</tr>
<tr>
<td>Bottom Enclosure S/N > 106K</td>
<td>1004700</td>
<td>7-13,7-55</td>
</tr>
<tr>
<td>Cable Kit (all interconnecting)</td>
<td>582131</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Circulation Fan</td>
<td>582132</td>
<td>7-26,7-27</td>
</tr>
<tr>
<td>Circulation Fan Muffler</td>
<td>582155 English – 1005618 International - 1005618</td>
<td>7-16,7-43</td>
</tr>
<tr>
<td>Coiled Pressure Tube 28”</td>
<td>1000752</td>
<td>7-19,7-30,7-31</td>
</tr>
<tr>
<td>DC Subsystem S/N >106K (see note 4)</td>
<td>1004709</td>
<td>7-17</td>
</tr>
<tr>
<td>DC/LCD Ribbon Cable</td>
<td>1016457</td>
<td>7-56</td>
</tr>
<tr>
<td>DCS Connector</td>
<td>1007206</td>
<td>Not Shown</td>
</tr>
<tr>
<td>DC/MC/PC Upgrade with PAV S/N<106K</td>
<td>1004707</td>
<td>7-24,7-25</td>
</tr>
<tr>
<td>DC/MC/PC Upgrade S/N<106K</td>
<td>1004714</td>
<td>7-24,7-25</td>
</tr>
<tr>
<td>Display Control (D/CS)</td>
<td>582133</td>
<td>7-24,7-25,7-45,7-46</td>
</tr>
<tr>
<td>EPROM V11 S/N<106K</td>
<td>1000286</td>
<td>7-47</td>
</tr>
<tr>
<td>EPROMS V11S/N<106KW/PAV</td>
<td>1003524</td>
<td>7-47</td>
</tr>
<tr>
<td>EPROM V12 S/N<106K</td>
<td>1000351</td>
<td>Not Shown</td>
</tr>
<tr>
<td>EPROMS PAV 12 S/N<106K</td>
<td>1000349</td>
<td>Not Shown</td>
</tr>
<tr>
<td>EPROMS V13S/N>106K</td>
<td>1000353</td>
<td>7-11,7-36</td>
</tr>
<tr>
<td>EPROMS PAV V13 S/N>106K</td>
<td>1000354</td>
<td>7-11,7-36</td>
</tr>
</tbody>
</table>
BiPAP Vision Repair Kits (Continued)

<table>
<thead>
<tr>
<th>Replacement Kit</th>
<th>Replacement Part No.</th>
<th>Photo Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPROM Extraction Tool Kit</td>
<td>1006874</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Front Panel Enclosure</td>
<td>582135</td>
<td>7-54</td>
</tr>
<tr>
<td>Fuses, 115VAC, S/N <100500</td>
<td>582100</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Fuses, 100-120 Volt, S/N >100499</td>
<td>1000749</td>
<td>7-14</td>
</tr>
<tr>
<td>Fuses, 230-240 Volt, all S/N’s</td>
<td>1000750</td>
<td>7-14</td>
</tr>
<tr>
<td>Grounding Post</td>
<td>1002902</td>
<td>7-13, 7-26</td>
</tr>
<tr>
<td>Grounding Post Hand Punch</td>
<td>1002991</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Keypad, English</td>
<td>582151</td>
<td>7-54</td>
</tr>
<tr>
<td>Keypad, German</td>
<td>582221</td>
<td></td>
</tr>
<tr>
<td>Keypad, Universal</td>
<td>1004712</td>
<td></td>
</tr>
<tr>
<td>Hose Kit (All internal Tubing)</td>
<td>582136</td>
<td>Not Shown</td>
</tr>
<tr>
<td>ICB Cable S/N <106K</td>
<td>582159</td>
<td>7-49</td>
</tr>
<tr>
<td>ICB Cable S/N >106K</td>
<td>1004695</td>
<td>7-18, 7-19, 7-28, 7-30</td>
</tr>
<tr>
<td>In-Line Flow Restrictor (ILFR) Valve Assembly</td>
<td>582137</td>
<td>7-29, 7-35, 7-39</td>
</tr>
<tr>
<td>Inlet Filter Cover</td>
<td>1003444</td>
<td>7-13, 7-15, 7-43</td>
</tr>
<tr>
<td>Inlet Filter Enclosure Assembly (see note 7)</td>
<td>582134</td>
<td>7-13, 7-15, 7-20</td>
</tr>
<tr>
<td>Inlet Filter Foam Strip</td>
<td>1004493</td>
<td>7-52</td>
</tr>
<tr>
<td>Inlet Filter Replacement (×6)</td>
<td>582101</td>
<td>7-15</td>
</tr>
<tr>
<td>Inlet Mesh Filter (Nylon)</td>
<td>1000747</td>
<td>7-15</td>
</tr>
<tr>
<td>Label, Diagnostic/Nurse S/N>106K</td>
<td>1004703</td>
<td>7-16</td>
</tr>
<tr>
<td>Liquid Crystal Display (LCD) Assembly</td>
<td>582139</td>
<td>7-17, 7-56</td>
</tr>
<tr>
<td>Main Power Switch</td>
<td>582141</td>
<td>7-13, 7-26, 7-38</td>
</tr>
</tbody>
</table>
BiPAP Vision Repair Kits (Continued)

<table>
<thead>
<tr>
<th>Replacement Kit</th>
<th>Replacement Part No.</th>
<th>Photo Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC/DC Cable S/N >106K</td>
<td>1004698</td>
<td>7-28</td>
</tr>
<tr>
<td>MC Board S/N >106K (see note 3, 4)</td>
<td>1004711</td>
<td>7-34, 7-36</td>
</tr>
<tr>
<td>Mobile Stand III Shipper</td>
<td>1009410</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Mobile Stand III drawer feet</td>
<td>1009745</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Ni-Cad Alarm Battery for DC (all)</td>
<td>1012819</td>
<td>7-17, 7-22, 7-25</td>
</tr>
<tr>
<td>Nurse Call Adapter (Executon/Hill-Rom connector)</td>
<td>1014280</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Nurse Call Cable</td>
<td>1003742</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Nurse Call Harness S/N >106K</td>
<td>1004697</td>
<td>7-26, 7-27, 7-36</td>
</tr>
<tr>
<td>Oxygen Baffle</td>
<td>1004705</td>
<td>7-26, 7-31, 7-35</td>
</tr>
<tr>
<td>Oxygen Module (OM) Assembly</td>
<td>English- 582142</td>
<td>7-13, 7-20, 7-29, 7-32</td>
</tr>
<tr>
<td>Oxygen Module (OM) Assembly</td>
<td>Int 1- 1004977</td>
<td></td>
</tr>
<tr>
<td>Oxygen Module (OM) Manifold/Regulator Filters (x5)</td>
<td>582153</td>
<td>7-13</td>
</tr>
<tr>
<td>Oxygen Module (OM) Manifold/Regulator Bowl</td>
<td>582154, 1007546</td>
<td>7-13</td>
</tr>
<tr>
<td>Oxygen Regulator/Manifold</td>
<td>1014434</td>
<td>7-32</td>
</tr>
<tr>
<td>Oxygen Flowbody/PCA</td>
<td>1014433</td>
<td>7-32</td>
</tr>
<tr>
<td>Oxygen Inlet Fitting (DISS)</td>
<td>1014805</td>
<td>7-32</td>
</tr>
<tr>
<td>PC Board S/N >106K (see notes 3, 4)</td>
<td>1004710</td>
<td>7-11</td>
</tr>
<tr>
<td>PC/MC Upgrade PAV S/N <106K</td>
<td>1000356</td>
<td>7-33</td>
</tr>
<tr>
<td>PC/MC Upgrade S/N <106K (see notes 3, 4)</td>
<td>1004713</td>
<td>7-33</td>
</tr>
<tr>
<td>Power Harness PC/DC S/N >106K</td>
<td>1004696</td>
<td>7-28</td>
</tr>
<tr>
<td>Power Harness PSS/PC S/N >106K</td>
<td>1004706</td>
<td>7-27, 7-30</td>
</tr>
<tr>
<td>Power Supply Subsystem (PSS)</td>
<td>582145</td>
<td>7-26, 7-27, 7-30, 7-38</td>
</tr>
<tr>
<td>Pressure Regulation Valve (PRV) Assembly</td>
<td>582147</td>
<td>7-29, 7-35, 7-39</td>
</tr>
<tr>
<td>Pressure Regulation Valve (PRV) Muffler</td>
<td>582156</td>
<td>7-55</td>
</tr>
<tr>
<td>Rotary Encoder</td>
<td>582148</td>
<td>7-23</td>
</tr>
<tr>
<td>Rotary Encoder Knob</td>
<td>582157</td>
<td>7-17, 7-54</td>
</tr>
<tr>
<td>Rubber Feet</td>
<td>582149</td>
<td>7-43, 7-55</td>
</tr>
<tr>
<td>Service Manual</td>
<td>582160</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Replacement Kit</td>
<td>Replacement Part No.</td>
<td>Photo Page No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Shipping Container (includes all necessary inner packaging)</td>
<td>1002424</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Test Cable (S/N <106K) (see section 8.10)</td>
<td>582161</td>
<td>7-58</td>
</tr>
<tr>
<td>Test Cable (Ribbon) (or RS232 Ribbon Harness for S/N >106K)</td>
<td>1004699</td>
<td>7-17,7-19,7-27, 7-36, 7-42</td>
</tr>
<tr>
<td>Test Cable S/N >106K (see section 8.10) (or for upgraded units)</td>
<td>1004823</td>
<td>7-58</td>
</tr>
<tr>
<td>Test Orifice (0.25”)</td>
<td>332353</td>
<td>Not Shown</td>
</tr>
<tr>
<td>Top Enclosure</td>
<td>582150</td>
<td>7-13,7-43</td>
</tr>
<tr>
<td>Transformer Assembly</td>
<td>582152</td>
<td>7-26, 7-27, 7-40</td>
</tr>
</tbody>
</table>
Note 1
All items have a quantity of one unless otherwise specified.

Note 2
For specific country AC power cord ordering information, please contact Respironics Customer Service.

Note 3
The original EPROM must be removed from the circuit board and installed into the new circuit board, unless performing an upgrade to units S/N<106K. EPROMS are included.

Note 4
This item is either a Replacement Part or an Optional Upgrade for the unit.

Note 5
For units from S/N 100500 to 100999, the PSS (582145) and power wiring harness (part of 582131) must also be replaced if not already done.

Note 6
For units from S/N 100500 to 100999, the PSS (582145), main power switch (582141) and the power wire harness (part of 582131) must also be replaced.

Note 7
The Inlet filter foam strip (1004493) should also be ordered with this kit.

Note 8
CAUTION: Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.
7.4 BiPAP Mobile Stand Repair Parts

Mobile Stand II

<table>
<thead>
<tr>
<th>Replacement Kit</th>
<th>Replacement Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Stand II Caster (locking)</td>
<td>1001921</td>
</tr>
<tr>
<td>Mobile Stand II Casters (x3) (non-locking)</td>
<td>1001922</td>
</tr>
<tr>
<td>Mobile Stand II Circuit Arm Mount</td>
<td>1002310</td>
</tr>
<tr>
<td>Mobile Stand II Plexiglass Door</td>
<td>1001920</td>
</tr>
<tr>
<td>Mobile Stand II Pole</td>
<td>1001923</td>
</tr>
<tr>
<td>Mobile Stand II Shipping Container</td>
<td>1002425</td>
</tr>
<tr>
<td>Mobile Stand II Strike/Catch Kit</td>
<td>1002151</td>
</tr>
<tr>
<td>Circuit Support Arm Handle</td>
<td>1006501</td>
</tr>
</tbody>
</table>

Mobile Stand III

<table>
<thead>
<tr>
<th>Replacement Kit</th>
<th>Replacement Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidifier Bracket</td>
<td>1005101</td>
</tr>
<tr>
<td>O2 Hose Hanger Assembly</td>
<td>1007903</td>
</tr>
<tr>
<td>Oxygen Analyzer Pole</td>
<td>1011515</td>
</tr>
<tr>
<td>Storage Compartment</td>
<td>1007904</td>
</tr>
<tr>
<td>Mobile Stand III Storage Tray</td>
<td>1007905</td>
</tr>
<tr>
<td>Mobile Stand III Shipper</td>
<td>1009410</td>
</tr>
<tr>
<td>Mobile Stand III Storage Tray Feet</td>
<td>1009745</td>
</tr>
</tbody>
</table>
Chapter 7: Repair and Replacement

7.5 Replacement Identification Photos

Overview

The following identification photos are to be used as repair guidelines. Items have been identified for all serial number units beginning with 100500 to present.

Pressure Control Board S/N >106K

(1004710)

EPROM S/N >106K
(1000353)
(W/ PAV 1000354)
Pressure Air Flow Subsystem

Note: This item is obsolete, originally P/N 582146. Replaced by 1004713 for units S/N <106001.
Rear View
S/N >106000

- Oxygen Module Assembly (English) (582142) (Int’l 1005619)
- Oxygen Inlet (1014805)
- Oxygen Module Manifold/Regulator (582153) (1007547)
- Oxygen Module Manifold/Regulator Bowl (582154) (1007546)
- Top Enclosure (582150)
- Grounding Post (1002902)
- Inlet Filter Enclosure Assembly (582134)
- Inlet Filter Cover (1003444)
- Top Cover Screws (2)
- Nurse Call/Remote Alarm Connector
- RS232 Diagnostic Connector
- Model Number and Serial Number
- Power Cord Clamp (1000751)
- Main Power Switch (now comes with a spring loaded cover.) (582141)
- AC Inlet (582138)
- Bottom Enclosure S/N >106K (1004700)
Fuses and Voltage Selector

AC Inlet (582138) Voltage Setting

Fuses
(1000749 for 100 and 120 VAC operation
1000750 for 230 and 240 VAC operation)
Inlet Filter Enclosure
(582134)
Chapter 7: Repair and Replacement

Exploded View (Continued)

Circulation Fan Muffler
(English 582155)
(Int’l 1005618)

* Included
DC View #1 S/N >106K

- Alarm Battery (1012819)
- Display Control (DC) S/N >106K (1004709)
- Liquid Crystal Display (582139) Located under the DC/LCD Mounting plate
- RS232 Harness S/N >106K (1004699)
- DC Power Connection S/N >106K
- ICB Cable S/N >106K (1004695)
- Rotary Encoder (582148)
- Ground Connection
DC View #2
S/N >106K

- LCD Backlight Voltage Connection (Connects either way)
- Main Power Indicator Cable Connection (Connects either way)
- Audible Alarm Connection
- Rotary Encoder Connection
- DCS/LCD Mounting Bracket
- ICB Cable S/N >106K (1004695)
Component Identification

- ICB Cable S/N >106K (1004695)
- AirFlow Module (582127)
- Coiled Pressure Tubing (1000752)
- Ground Wire
- Main Power Indicator Connector
- RS 232 Harness S/N >106K (1004699)
- Audible Alarm (1000743)
Component Identification

- Inlet Filter Enclosure Assembly (582134)
- Blower Muffler (582129)
- Oxygen Module Assembly (English 582142) (Int'l 1005619)
- Blower Assembly (582128)
Blower Assembly
(582128)

Blower Vibration Isolators (x3)
(1003893)

Blower Mounting Brackets (x3)

Blower Connection to PC

Blower

Heat Sink*

Dampener*

* Not sold separately
Front Panel Assembly

- DC Subsystem
- Error LED
- Main Power Indicator Connector
- LCD / DC Cable
- Keypad Cable
- Ground Connection
- Audible Alarm Battery
- DC Power Connector
- ICB Connector
- Rotary Encoder
DC Cable Connections

DC EPROM

LCD / DC Cable

Keypad Ribbon Cable

Rotary Encoder (582148)
Front View DC Subsystem
(1004709, or part of 1004707, 1004714)
Back View DC Subsystem

(1004709, or part of 1004707, 1004714)
Component Identification

- Circulation Fan (582132)
- RFI Filter (Part of AC Inlet)
- AC Inlet (582138)
- Ground Post (1002902)
- Oxygen Module Assembly (582142)
- Oxygen Baffle (1004705)
- Blower / ILFR Coupler (1003728)
- AC Inlet to Transformer Connection
- Transformer Assembly (582152)
- Power Supply Subsystem (PSS) (582145)
- Main Power Switch (582141)
- Nurse Call/ Remote Alarm Connector (1004697)
- Inlet Filter Enclosure (582134)
Component Identification

- Power Supply Subsystem (PSS) (582145)
- RS 232 Harness S/N > 106K (1004699)
- Nurse Call / Remote Alarm Harness (1004697)
- Circulation Fan (582132)
- PC Subsystem
- PC to DC Power Connection
- Power Harness PSS/PC S/N > 106K (1004706)
- Transformer Assembly (582152)
- Main Power Switch Connection to PSS
DC Cables

ICB Cable S/N >106K (1004695)
RS 232 Cable S/N >106K (1004698)
Power Harness PC / DC S/N >106K (1004696)
Component Identification

- Oxygen Valve (Part of Kit 1014434)
- Oxygen Module Assembly (English 582142) (Int’l 1005619)
- Oxygen to PC Ribbon Cable
- Oxygen Valve Connection
- Pressure Regulation Valve (PRV) (582147)
- AFM Thermister
- In-Line Flow Restrictor Valve (ILFR) (582137)
- Ac Inlet to Transformer Connection
Component Identification

- Transformer Assembly (582152)
- PSS to PC Power Cable (1004706)
- Coiled Pressure Tube (1000752)
- AFM to PC Ribbon Cable
- OM to PC Ribbon Cable
- Redundant Pressure Sensor
- Audible Alarm (1000743)
- Error LED
- ICB Cable S/N >106K (1004695)
Component Identification

- Oxygen Baffle (1004705)
- Air Flow Module (582127)
- Transformer Assembly (582152)
- Coiled Pressure Tubing (1000752)
- ICB Cable (1004695)
- Audible Alarm (1000743)
Oxygen Module Assembly
(English, 582142)
(Int’l 1005619)
Pressure Control (PC) Subsystem*
(1004710)

* Also part of 1004713, used to upgrade units S/N<106K 1000356, 1004714 and 1004707
Main Control (MC) Subsystem*
(1004711)

* Also part of 1004713, 1000356, 1004714 and 1004707
Component Identification

Inline Flow Restrictor Valve (ILFR)
(582137)

Pressure Regulation Valve (PRV)
(582147)

Oxygen Baffle
(1004705)
Main Control (MC) Subsystem*
(1004711)

* Also part of 1004713, 1000356, 1004714 and 1004707 used to upgrade units S/N<106K
Air Flow Module (AFM)
(582127)

- Thermistor
- Pressure Sensor
- Flow Sensor
- Connects to the PC
- Connects to the redundant pressure sensor on the PC

Oxygen Baffle
(1004705)

- Arrow towards front of unit, gas flow direction.
Power Supply Subsystem (PSS)
(582145)

Main Power Switch Connection (582141)

Transformer Connection

Main Power LED, Connects to the Front Panel

Circulation Fan Power Connection

Power Supply connection to PC Subsystem

Circulation Fan Current Sense, Connects to PC
Valve Identification

In-Line Flow Restrictor Valve (ILFR) (582137)

Pressure Regulation Valve (PRV) (582147)

Connect to PC Subsystem
Transformer Assembly
(582152)
Component Identification

Transformer Connection

Circulation Fan (582132)

Main Power Switch (582141)

Nurse Call / Remote Alarm (1004697)

RS 232 Connector (1004699)

Connects to PSS

Ac Inlet / EMI Filter (582138)

Grounding Stud

Bottom Enclosure S/N >106K (1004700)

Connections to MC (NurseCall / Remote Alarm)

Connects to PSS
Nurse Call / Remote Alarm, RS 232 Cable routing
Back Panel, Units S/N <106001

- Top Enclosure (582150)
- Inlet Filter Cover (1003444)
- Inlet Filter Enclosure (582134)
- Main Power Switch (582141)
- Circulation Fan Muffler (English, 582155) (Int’l, 1005618)
- Oxygen Module (English, 582142) (Int’l, 1005619)
- Bottom Enclosure S/N <106K (582130)
- Rubber Feet (x4) (582149)
- AC Inlet (582138)
- AC Power Cord Clamp (1000751)
Display Control Subsystem (D/CS)
Connections for S/N <106001
(582133)
Display Control Subsystem (D/CS)
Connections for S/N <106001
(582133) *

* Also could be for upgrade units S/N <106K using 1004714 or 1004707
Display Control Subsystem (D/CS) (582133)
Display Control Subsystem (D/CS)
(582133)

- RS 232 Test Cable Connector
- LCD Backlight Connector (connect either direction)
- EPROM
 (1000286 Non PAV S/N <106K)
 (1003524 W/PAV S/N <106K)
Display Control Subsystem (D/CS)
(582133)
Component Identification *
(S/N<106K)

* Replaced using upgrade kit 1004713, or 1000356 (PAV)
Component Identification
(S/N<106K)
Pressure Airflow Subsystem (PAS)
(No longer manufactured, now part of upgrade kit 1004713 or 1000356, PAV)
Inlet Foam Strip Location

Inlet Filter Foam Strip (1004493)

Inlet Filter Enclosure (582134)
Main Control Subsystem (MCS)
(No longer manufactured, now part of upgrade kit 1004713 or 100356, PAV for S/N<106K)
Component Identification

Front Enclosure (582135)

Keypad
(English, 582151)
(Universal Symbols, 1004712)
(German, 582221)

Rotary Encoder Knob (582157)

Note: See “Touchpad Replacement Instructions” at end of chapter, section 7.6
Component Identification

Bottom Enclosure S/N <106K
(582130)
Bottom Enclosure S/N >106K
(1004700)

Rubber Feet (x4)
(582149)

PRV Muffler
(582156)
LCD Assembly
(582139)
Blower Valve Coupler
(1003728)
Test Cable Identification *

Test Cable, Units S/N < 106K (582161)

Test Cable, Units S/N > 106K and Upgraded Units S/N < 106K Hybrid (1004823)

Test Cable, Units S/N < 106K - Upgraded to Hybrid (1004699)

* See Section 8.10, Test Cable Usage Definitions, for further information.
7.6 Touch Pad Replacement Instructions

Replacement Part Number: 582151

Procedure
Removed / Installed During Process:
• Top enclosure
• Front panel enclosure
• Rotary encoder
• Display / Control Subsystem-Liquid Crystal Display (D / CS - LCD) mounting plate assembly
• Touch pad

Included in Kit: Touch pad

Tools Required: Phillips screwdriver, 7/16" nut driver, Isopropyl alcohol, Cleaning cloth

WARNING: Electrical shock hazard: Disconnect the electrical supply before attempting to make any repairs to the device.

CAUTION:
Electronic components used in this device are subject to damage from static electricity. Repairs made to this device must be performed only in an antistatic, ESD-protected environment.
Step 1
Removing the D / CS Touch Pad Ribbon Cable and Shielding Foil

a. Making sure the front enclosure is protected, place it face down on the work surface with the D / CS upwards.

b. Gently remove the ribbon cable from (J6).

c. Remove the one D / CS mounting screw that has touch pad shielding foil and ground wire under it. Locate the foil away from this connection.
Touch Pad Replacement (Continued)

Step 2
Removing the D / CS - LCD Mounting Plate

a. Remove the six screws securing the D / CS - LCD mounting plate to the front enclosure.
b. Hold down on the front panel enclosure, and slowly lift upwards on one of the mounting plate to begin releasing the LCD from the touch pad. Continue until the plate can be removed.

NOTE: It may be necessary to use a small amount of isopropyl alcohol to assist with the touch pad removal.

D / CS LCD Mounting Plate

NOTE: Place this assembly in a protected area.

Step 3
Removing the Touch Pad

a. With the touch pad facing down, place a small amount of isopropyl alcohol between the touch pad lens and the front panel enclosure at its smallest width (near the top). Tilt the front panel enclosure slightly, and allow it to sit for approximately 10 to 15 seconds.
Apply Isopropyl Alcohol as Necessary

b. Gently push the touch pad away from the front panel enclosure, while adding small amounts of alcohol as required, to loosen the bonding glue. Continue slowly and carefully around the panel opening until entire touch pad is removable.

c. Using isopropyl alcohol, clean any remaining glue from the front panel enclosure touch pad mounting surface.

Step 4
Installing the Touch Pad

a. Lay the front panel enclosure face up. With respect to the front of the unit, place the left side of the front panel enclosure slightly over the edge of the work surface.

b. After assuring that all glue from the original touch pad has been removed from the front panel enclosure, remove the protective paper backing from the new touch pad, including the clear protective coating on the LCD side of the touch pad lens.

c. Place the ribbon cables and ground shields through their appropriate slots in the front panel enclosure. Make sure no wiring is pinched. Slide the cables and shields through until the left side of the touch pad rests (but is not secured) on the left side of the front panel enclosure.

d. Align the touch pad, top to bottom, and rest it in place. Observe alignment as the touch pad becomes secured to the front panel enclosure.
NOTE:
Place one hand underneath the front panel enclosure while applying any pressure, so that the curve in the front panel is not damaged. Once on and aligned properly, apply a rotating, rubbing pressure to secure the touch pad.

NOTE:
If an alignment problem occurs, use a small amount of isopropyl alcohol to remove the touch pad. Allow to dry before trying again.

Step 5
Installing the D / CS - LCD Mounting Plate

a. While placing the D / CS - LCD mounting plate on the front enclosure, ensure that the cables are properly routed. Secure the plate into position using the six mounting screws.

Step 6
Installing the D / CS - Touch Pad Ribbon Cable

a. With the tabs fully extended on (J6), place the ribbon cable completely into the connector. While applying slight inward pressure on the ribbon cable, lock the tabs on both sides of (J6).
Chapter 8: Testing and Calibration

8.1 Overview ... 8-2
8.2 Recommended Testing After Part(s) Replacement 8-3
8.3 Exhalation Port Test ... 8-5
8.4 Total Operating Hours Transfer Procedure 8-8
8.5 Blower/Valve Calibration Procedure 8-10
8.6 Performance Verification .. 8-12
8.7 Run-In Cycle Procedure ... 8-16
8.8 System Final Test ... 8-18
8.9 PC or Laptop Setup Procedures 8-37
8.10 Test Cable Usage Definitions 8-40
8.11 Oxygen Flow Module Test 8-41
Chapter 8: Testing and Calibration

8.1 Overview
The following is a summary of the testing and calibration procedures detailed in this chapter.

8.2 Recommended Testing after Part(s) Replacement
Defines the recommended testing to perform on the unit after removal and installation of a replacement part. The testing reflects the minimum required to verify system performance.

8.3 Exhalation Port Test
Characterizes the circuit by analyzing the leak rate of the exhalation port.

8.4 Total Operating Hours Transfer Procedure
Transfers the current Total Operating Hours for a unit when replacing the Main Control Subsystem (MC), or the memory battery.

8.5 Blower/Valve Calibration Procedure
Provides instructions for calibrating the Blower and Valves of the unit after major component replacement.

8.6 Performance Verification
Verifies that the BiPAP Vision user interface is functioning properly. It is not intended to verify specifications, only the operational features are tested.

8.7 Run-In Cycle Procedure
This procedure is to be used after servicing the BiPAP Vision as called out in the Testing after Part(s) Replacement on page 8-3 and 8-4. The unit will cycle for one half hour with specified operating parameters to qualify the repair after a component has been replaced.

8.8 System Final Test
Verifies that the Vision unit operates within specifications. The intent of this procedure is to ensure that the unit functions against performance specifications by verification of the internal sensor measurement’s accuracy and the unit’s capability to generate and control the required pressures and flow rates of the various operating modes. User controls and alarm functions are also tested.

8.9 PC or Laptop Setup Procedures
Necessary steps to set up a PC/Laptop for testing or Vent Inop error code extraction.

8.10 Test Cable Usage Definitions

8.11 Oxygen Flow Module Test
8.2 Recommended Testing after Part(s) Replacement

Purpose

This chart defines the recommended testing to perform on the unit after removal and installation of a replacement part. The testing reflects the minimum required to verify system performance.

<table>
<thead>
<tr>
<th>Replacement Item</th>
<th>Blower/Valve Cal.</th>
<th>Run-In Cycle</th>
<th>Performance Verification</th>
<th>System Final Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Air Flow Module (AFM)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>2. Alarm “B” Option</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>3. Blower</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>4. Blower Muffler</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>5. Bottom Enclosure</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>6. Cables (any internal)</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>7. Circulation Fan</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>8. Display Control (DC)</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>9. AC Power Cord (any)</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>10. Fan Muffler</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>11. Filter Enclosure</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>12. Filter</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>13. Front Panel Enclosure</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>14. Fuses, Domestic</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>15. Fuses, International</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>16. Hoses (any internal)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>17. ICB Ribbon Cable</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>18. In-Line Flow Restrictor (ILFR)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>19. AC Inlet</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>20. Liquid Crystal Display (LCD)</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>21. Main Control (MC)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>22. Oxygen Module Assembly (OM)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>23. OM Regulator Bowl</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>24. OM Regulator Filter</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>25. Main Power Switch</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>26. Power Supply Subsystem (PSS)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>27. Pressure Control (PC)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>28. Pressure Relief Valve (PRV)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>29. PRV Muffler</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>30. Rotary Encoder</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Replacement Item Run-in Cycle Performance Verification System Final Test

<table>
<thead>
<tr>
<th>Replacement Item</th>
<th>Blower/Valve Cal.</th>
<th>Run-in Cycle</th>
<th>Performance Verification</th>
<th>System Final Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. Rotary Encoder Knob</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>32. Rubber Feet</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>33. Top Enclosure</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>34. Touch Pad</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>35. Transformer</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>36. Power Line Filter</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>37. Audible Alarm</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>38. EPROM</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>39. PAV/T</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>40. Oxygen Manifold/Regulator</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>41. Oxygen PCA/Flowbody</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

8.3 Exhalation Port Test

![Exhalation Port Test](image)

Figure 8-1
8.3 Exhalation Port Test

Purpose

The Exhalation Port Test characterizes the circuit by analyzing the leak rate of the exhalation port. During the test, the system learns the intentional exhalation port leak over the complete pressure range. The learned leak value is then stored in system memory and is used to perform leak calculations and provide an accurate display of patient leak, minute ventilation, and tidal volume in the Data Display Area. When a test is performed successfully, the Data Display shows the unintentional leak. The display will appear as “Pt. Leak” in the Data Display Area. If the test is not performed or cannot be completed successfully, the system is unable to accurately know the intentional leak and will display the total leak value (intentional + unintentional). The display will appear as “Tot. Leak” in the Data Display Area.

NOTE:

The Exhalation Port Test should be performed after servicing to ensure the accuracy of estimated tidal volume and minute ventilation readings. Accurate minute ventilation readings are necessary to ensure the accuracy of the low minute ventilation alarm when it is set below 3 L/min.

NOTE:

The Exhalation Port Test is recommended before each use, with circuit changes, with changes in the exhalation port, or after servicing. Completing the test ensures the accuracy of some displays and alarms.

Equipment Set-up

- First Install a 6’ smooth inner lumen tubing, then a whisper swivel, and then a pressure pick-off port onto the unit outlet.
- Connect a pressure line from the pick-off port to the pressure connection on the Vision unit.
- Occlude the outlet.

Procedure

Step 1

Plug in the power cord. The **Main Power** indicator will illuminate.

Step 2

Turn the main power switch to the On position and wait for the unit to complete the **SYSTEM SELF TEST** (internal system check). This will take approximately 5 to 15 seconds. The **TEST EXHALATION PORT** screen will then be displayed.
Step 3
Press the Test Exh Port (Test Exhalation Port) soft key. Follow the instructions that appear on the screen, then press Start Test.

Figure 8-2
Exhalation Port Test Instructions

NOTE:
This test can be canceled at anytime by pressing the Cancel Test soft key.
Step 4 There are seven possible status messages that can appear depending on the outcome of the SYSTEM SELF TEST. Follow the instructions for the condition that appears.

a. **TEST COMPLETE**
 The circuit displays normal leak conditions at the exhalation (user interface) port.

b. **LOW FLOW, CHECK CIRCUIT, REPEAT TEST**
 The circuit displays a lower than normal leak rate at the exhalation port. Check that the vents on the exhalation port are not blocked and that the circuit is sound. Replace, in order, the PC, AFM, PRV, and ILFR. Repeat the Exhalation Port Test.

c. **EXCESSIVE FLOW, CHECK CIRCUIT, REPEAT TEST**
 The circuit displays a higher than normal leak rate at the exhalation port. Assure that the internal circuit is properly assembled. Replace, in order, the PC, PRV, and ILFR. Repeat the Exhalation Port Test between each replacement.

d. **OCCLUDED EXHALATION PORT, CHECK CIRCUIT, REPEAT TEST**
 The leak rate was less than predicted. Check that the exhalation port is not blocked. Replace, in order, the PC, AFM, PRV, and ILFR. Repeat the Exhalation Port Test between each replacement.

e. **PROXLINE DISCONNECTED, CHECK CIRCUIT, REPEAT TEST**
 The proximal pressure line is disconnected. Check that the internal and external proximal pressure line is connected and is not obstructed. Repeat the Exhalation Port Test.

f. **PRESSURE REGULATION ERROR, CHECK CIRCUIT, REPEAT TEST**
 Leak test pressures cannot be attained. Check that the internal pressure line is connected and not obstructed. Replace, in order, the AFM and PC. Repeat the Exhalation Port Test between each replacement.

g. **INTERMITTENT EXCESSIVE FLOW, CHECK CIRCUIT, REPEAT TEST**
 The leak rate was intermittently high during the test. Check that the internal and external circuit is occluded and properly sealed. Replace, in order, the PRV valve and PC. Repeat the Exhalation Port Test between each replacement.
8.4 Total Operating Hours Transfer Procedure*

Purpose
The following steps must be done to transfer the current Total Operating Hours for a unit.

Equipment

- PC / Laptop
- Test Cable (RI P/N 582161) for S/N < 106000
- Test Cable (RI P/N 1004823) for S/N > 106000 and upgraded units for S/N < 106000.

Note: See Figure 8-3 and 8-4 for cable connections.

Procedure

Step 1 Power on the unit.

Note: If powering on is not possible, then an approximation will have to be made based on previous documented hours and additional running time.

Step 2 Write down the Total Operating Hours for the unit from either the Set Up Screen or the Options Screen.

Step 3 Using the test cable, connect a PC/Laptop to the MC. If necessary, follow the Terminal Setup guidelines in Section 8.9

Step 4 Power on and leave the unit in the Set Up Screen.

Step 5 Enter “S J O” on the terminal keyboard. This will display the “Operating Time Modify” screen.

Step 6 Follow the instructions on the screen to modify the Total Operating Time value displayed to match the hours written down from the unit in Step 2.

Step 7 After the time is correctly set, turn the power switch off, remove the terminal from the MC, reassemble the unit, or continue with testing process.

* This is used primarily when a Main Control Subsystem or Lithium battery is replaced.
Chapter 8: Testing and Calibration

Figure 8-3
For Visions with S/N < 106K

Figure 8-4
For Visions with S/N > 106K
8.5 Blower / Valve Calibration Procedure

Purpose
This procedure provides instructions for calibrating the Blower and Valves for the BiPAP Vision system. This test will take about 10 minutes or less depending on the software version.

Note: Unit must be a minimum software revision of 11.8 / 12.4 / 13.4 to successfully pass this test. If necessary, upgrade unit.

Equipment (See Figure 8-3 and 8-4 for cable connections)
- Test Cable (Respironics P/N 582161) for S/N < 106K
- Test Cable (RI P/N 1004823) for S/N >106K and upgraded for units for S/N <106K
- PC / Laptop (Terminal mode)
- 0.25” test orifice (Respironics P/N 332353)
- Phillips screwdriver

CAUTION: Electronic components used in this device are subject to damage from static electricity. Use and follow appropriate electro-static discharge (ESD) procedures.

Procedure

Step 1 Verify that the power to the BiPAP Vision is turned Off.

Step 2 For S/N<106000, remove the top enclosure.

Step 3 Depending on the test cable needed, connect one side to the (J3) connector on the Pressure Control Subsystem (PC), or a standard serial cable to the PC connector, and the other side to the PC or Laptop.

Step 4 Install the test orifice and pressure line to the Vision outlet. Plug in and turn on the unit. Turn on the PC/Laptop.

NOTE: It may be necessary to refer to the “PC/Lap Setup Procedure” found in Chapter 8 to properly set the parameters on the PC or Laptop for Hyperterminal application.
Chapter 8: Testing and Calibration

Blower / Valve Calibration Procedure (Continued)

Step 5 Wait for the Test Exhalation Port/Language screen to appear. Do not press Monitoring.

Step 6 Assure that the test orifice and the PRV exhaust are not obstructed.

Step 7 Type the calibration start code: **SJB**, on the terminal with no carriage return.

NOTE: Insure that the calibration start codes are in all capital letters. These will not display on the PC or PC/Laptop.

Step 8 Wait for the calibration process to complete. The terminal will stop updating information and the cursor will blink when the process is finished. “Valve Calibration Successful” will be displayed. (See below for a description of the Calibration Sequence Summary.)

NOTE: If calibration is unsuccessful, try the test again. If it fails a second time, follow the guide lines on the screen for suggested failure information.

Step 9 Turn the unit Off and remove the power cord.

Step 10 Unplug the test cable from unit unless further testing is required.

Step 11 Remove the test orifice.

Step 12 Install the top enclosure, unless further testing is required.

Step 13 If necessary, carefully position the unit on its side and install the PRV muffler enclosure

Step 14 If necessary, set the unit upright.

Step 15 Test complete.

Calibration Sequence Summary

The first four states are for blower calibration. The blower DAC voltage is increased while the pressure and blower speed are monitored to determine the slope and intercept.

The next two states independently “warm up” the ILFR and PRV valves and then collect four sets of operating data on each to use to determine an average value.

All of this information is stored in memory and is used to ensure that the blower and the valves are able to meet the specified requirements.
8.6 Performance Verification

Purpose

This procedure confirms that the ventilator is functioning properly. It is not intended to verify specifications; only operational features are tested.

Equipment

- Test orifice (P/N 332353)
- Pressure tubing
- Smooth inner lumen tubing
- Whisper swivel II (P/N 332113)

Procedure

Step 1
First connect the smooth inner lumen tubing to the unit outlet then the whisper swivel and finally the test orifice. Connect the pressure tubing from the BiPAP Vision to the test orifice.

NOTE: If the Vision unit loses power, and power is restored in less than 10 seconds, the unit will return to operation at the same settings that were in effect before power was lost.

Step 2
Turn the unit on. When the Test Exhalation Port/Language Screen is displayed, remove the AC power cord from the rear of the unit. Verify that the Ventilator Inoperative visual (wrench icon) and the audible alarm is activated. Turn the unit off. Verify that the audible and visual alarms are no longer active.

NOTE: For software versions 11.2 and higher, the “Loss of AC Power” symbol will begin flashing in the display area. Press the Alarm Reset to clear and continue.

Perform the Exhalation Port Test as described in Section 8.3. (After successful completion of the test, press the MONITORING hard key to proceed to the Monitoring Screen.)

Step 4
Press the OPTIONS soft key to access the Options Screen. If an alarm is active, press the Reset Hard Key.
Step 5 Press the **TEST ALARMS** soft key to verify that both the audible tone and the alarm messages activate for all available alarms. The Ventilator Inoperative and Check Ventilator icons should illuminate during the test. The Vision front panel should look like Figure 8-2 (O\textsubscript{2} Flow, Lo MinVent, Hi Rate, and Lo Rate appear if the oxygen module and optional alarms are installed).

NOTE: Each alarm function has both an audible and visual component. Verify that both components are active during the alarm test. If either component is not active, have the unit serviced.

Step 6 Press Monitoring. If the CPAP or PAV/T mode is active, press the **MODE** hard key, select the **S/T** soft key, and set the parameters as shown below. Activate the new mode. If the S/T Mode is active, press the **MONITORING** hard key then press the **PARAMETERS** hard key. In either case, set the parameters as follows:

- **IPAP** = 15 cm H\textsubscript{2}O
- **EPAP** = 5 cm H\textsubscript{2}O
- **Rate** = 15 BPM
- **Timed Insp** = 1.0 sec
- **IPAP Rise Time** = 0.1 sec
Chapter 8: Testing and Calibration

Performance Verification (Continued)

Step 7 Press the ALARMS hard key and set the following alarm parameters.

- **Hi P** = 20 cm H₂O
- **Lo P** = 10 cm H₂O
- **Lo P Delay** = 20 sec
- **Apnea** = Disabled

If you have the optional Alarm Module, set the following additional alarm parameters.

- **Lo MinVent** = Disabled
- **Hi Rate** = 40 BPM
- **Lo Rate** = 10 BPM

Step 8 Press the MONITORING hard key to return to the Monitoring Screen. Verify the following parameters from the Monitoring Screen. (visual inspection)

- The Rate soft key indicator flashes when each timed breath is activated.
- The timed breath is approximately 1 second in duration.
- The IPAP during a timed breath is 15 cm H₂O.
- The EPAP during a timed breath is 5 cm H₂O.
- The Timed Breath Rate is 15 BPM as indicated in the Timed Breath Indicator display.

Step 9 Occlude the test orifice for a few seconds. While viewing the Vision Pressure waveform, create a small leak at the test orifice to simulate a spontaneous trigger. This process may have to be repeated a few times. Verify that the unit cycles to IPAP and that the Rate Indicator did not flash. After the breath is triggered, unocclude the test orifice.

Step 10 Press the ALARMS hard key to display the Alarms Screen.

Step 11 Select the Hi P soft key and adjust the parameter to 10 cm H₂O. Wait for the audible and visual alarms indicating a High Pressure alarm. Return the Hi P parameter to 20 cm H₂O and press the Alarm Reset hard key to remove the alarm message.

Step 12 Open the circuit to atmosphere for approximately 20 seconds to verify the following audible and visual alarms.

- The disconnect alarm is activated after a few seconds. Press the alarm silence button and continue.
- The Lo P Alarm is activated.

Occlude the patient outlet on the circuit and press the Alarm Reset hard key to clear both the audible and the visual alarms.

Step 13 Select the Apnea soft key and adjust the parameter to 20 sec. Maintain the occlusion of the patient connection for a minimum of 20 seconds to verify that the audible tone and the Apnea Alarm Message are activated. Adjust the Apnea setting to the Disabled setting. Press the Alarm Reset key to clear the visual alarms.

Step 14 Test complete.
BiPAP Vision Performance Verification/Screening Data Sheet

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Service Notification (Respironics use only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td>Total Operating Time</td>
</tr>
</tbody>
</table>

Purpose:

This data sheet is to be used in conjunction with the BiPAP Vision Performance Verification. It should also be used whenever a screening procedure is required on the BiPAP Vision.

Results:

<table>
<thead>
<tr>
<th>Test</th>
<th>Step</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator Inoperative Alarm</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhalation Port Test</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Alarms</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters From Monitoring Screen</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous Breath</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Pressure Alarm</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Pressure Alarm</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apnea Alarm</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tested By: (print)</th>
<th>Tested By: (signature)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.7 Run-In Cycle Procedure

Purpose

This procedure is to be used after servicing the BiPAP Vision as called out in the Recommended Testing after Part(s) Replacement Chart in section 8.2. The unit will cycle for one half hour, with specified operating parameters, to qualify the repair after a component has been replaced.

Equipment / Materials

- 0.25” test orifice (Respironics P/N 332353)
- pressure tubing

Procedure

Step 1 Connect the 0.25” test orifice (Respironics P/N 332353) to the outlet port, and the pressure tubing from its port to the pressure input on the BiPAP Vision.

Step 2 Connect the power, turn the unit On, and set up the following parameters in the S/T Mode.

\[
\begin{align*}
\text{IPAP} & = 40 \text{ cm H}_{2}\text{O} \\
\text{EPAP} & = 4 \text{ cm H}_{2}\text{O} \\
\text{Rate} & = 20 \text{ BPM} \\
\text{Timed Insp} & = 0.5 \text{ sec.} \\
\text{IPAP Rise Time} & = 0.1 \text{ sec.}
\end{align*}
\]

Step 3 Set the following alarm parameters:

\[
\begin{align*}
\text{Hi P} & = 50 \text{ cm H}_{2}\text{O} \\
\text{Lo P} & = \text{ Disabled} \\
\text{Lo P Delay} & = 60 \text{ sec.} \\
\text{Apnea} & = \text{ Disabled}
\end{align*}
\]

If the unit has the optional Alarm Module, and/or optional Oxygen Module set the following additional parameters:

\[
\begin{align*}
\text{Lo MinVent} & = \text{ Disabled} \\
\text{Hi Rate} & = 50 \text{ BPM} \\
\text{Lo Rate} & = 4 \text{ BPM} \\
\%O_{2} & = 21\%
\end{align*}
\]
Step 4 Return to the Monitoring screen and observe that the display values match the set values.

Step 5 Run the unit for one half hour with the above settings.

Step 6 Verify that the display values match the set values and that no alarms occurred during this time period. If a problem exists, follow the appropriate Troubleshooting Flow Chart in Chapter 6 and perform the Run-In Cycle Procedure again before proceeding.

Step 7 Test Complete.
8.8 System Final Test

Purpose

This procedure will verify that the Vision unit operates to specifications. The intent is to ensure that the unit functions against performance specifications by verification of the internal sensor measurement’s accuracy, and the unit’s capability to generate and control the required pressures and flow rates of the various operating modes. User controls and alarm functions are also tested. Below are the major activities performed within this test procedure:

- Set up the Unit for Test
- Verify Pressure Accuracy
- Measure Flow Accuracy
- Measure Dynamic Pressure Regulation
- Measure S/T Performance
- Verify Options, Controls, and Alarms
- Verify Oxygen Module Operation (if installed)
- Verify PAV/T Mode (if installed)
- Nurse Call/Remote Alarm (if installed)
- Earth Restance and Leakage Current (Optional)

Data and other various information is to be recorded on the System Final Test Data Sheet.

Equipment

- Flexible, smooth inner lumen tubing (P/N 301016)
- Flowmeter (Appendix A)
- Manometer (Appendix A)
- PC/Laptop (Appendix A)
- Mechanical lung (Appendix A)
- Medical grade Oxygen and regulator (for testing of optional oxygen module only)
- Oxygen analyzer (for testing of optional oxygen module only - Appendix A)
- Variable flow restrictor (adjustable valve) (P/N 1006120)
- Whisper swivel (P/N 332113)
- Phillips screwdriver
- Pressure tubing
- Safety analyzer (Appendix A)
- Test cable (P/N 582161 for serial numbers 105999 and less, P/N 1004823 for serial numbers 106000 and higher or upgraded units).
- Multiple outlet power strip
- Plug, cap, or stopper
- Pressure pick-off port (O_2 port, P/N 312710)
Initial Equipment Setup
(May vary according to equipment used) (Locally sourced flow restrictor)

Procedure

A. Connect Unit to Test Equipment

Step 1 Remove the top enclosure.

Step 2 Connect the Test Cable from the PC board (J3), or the Test Cable connector labeled PC, to the PC/laptop com port.

Step 3 Plug in the AC power cord and verify the MAIN POWER indicator is lit.
Step 4 Connect the patient tubing to the outlet of the unit. Place a pressure pickoff port on the other end and then connect this to the Flowmeter. Using another piece of patient tubing, connect the outlet of the flowmeter to the restrictor valve. Adjust restrictor valve to allow for a small amount of circuit leak. Refer to figure 8-3.

Step 5 Using a Tee fitting, connect the Manometer, the pressure pickoff port, and the Vision pressure port together.

B. Turn on Unit

Step 1 After the System Self Test is complete, record the **Total Operating Time** shown on the display shown at the bottom of the Test Exhalation Port/Language screen.

Step 2 Press MONITORING, then press Options.

Step 3 Verify that **Brightness** and **Contrast** can be controlled by pressing the appropriate key and turning the adjustment knob. Then adjust both of these for an acceptable display. (The Brightness has a small control range, it will not have much affect on the screen).

Step 4 Press MONITORING to exit.

C. Set Up Alarms and Scales

Step 1 Press ALARMS.

Step 2 After selecting the desired alarm, rotate the adjustment knob, and set each alarm according to the following:

<table>
<thead>
<tr>
<th>ALARM</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi P</td>
<td>50</td>
</tr>
<tr>
<td>Lo P</td>
<td>Disabled</td>
</tr>
<tr>
<td>Lo P Delay</td>
<td>60</td>
</tr>
<tr>
<td>Apnea</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Step 3 If ALARM MODULE B is installed, set the alarms as listed below (they will be displayed on the right side of the alarms screen).

<table>
<thead>
<tr>
<th>ALARM</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo Min Vent</td>
<td>Disabled</td>
</tr>
<tr>
<td>High Rate</td>
<td>50</td>
</tr>
<tr>
<td>Low Rate</td>
<td>4</td>
</tr>
</tbody>
</table>
Chapter 8: Testing and Calibration

System Final Test (Continued)

Step 4 Press SCALE. Select the desired scale then rotate the adjust knob. Set each to the following:

<table>
<thead>
<tr>
<th>SCALE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>45 cm H₂O</td>
</tr>
<tr>
<td>Vol</td>
<td>1500 ml</td>
</tr>
<tr>
<td>Flow</td>
<td>100 L/min.</td>
</tr>
<tr>
<td>Time Base</td>
<td>9 sec.</td>
</tr>
</tbody>
</table>

Step 5 Press MONITORING to exit.

D. Set CPAP Pressure

If the unit is in CPAP mode:

• Press PARAMETERS

• Press Set CPAP and adjust the pressure to 5 cm H₂O

If the unit is in S/T mode:

• Press MODE then CPAP.

• Press Set CPAP and adjust the pressure to 5 cm H₂O.

• Press Activate New Mode to enable.

If the unit is in PAV/T mode:

• Press MODE then CPAP.

• Press Set CPAP and adjust the pressure to 5 cm H₂O.

• Press Activate New Mode to enable.

Step 1 On the PC/Laptop type, in sequence, the capital letters SJL to view the system parameters of the Vision unit being tested. Note that only the blinking cursor will be displayed.

(If required, use the PC/Laptop Setup Procedure found in Chapter 8)
Chapter 8: Testing and Calibration

System Final Test (Continued)

<table>
<thead>
<tr>
<th>NOTE:</th>
<th>Lo Rate alarm will sound during this test. Press ALARM SILENCE to temporarily cancel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE:</td>
<td>Unit may oscillate when no flow is present. Open the flow restrictor slightly until it stops, then slowly close the valve.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>After a period of time, the unit will automatically switch to MONITORING. Press PARAMETERS to return to the parameters screen for making unit adjustments and viewing the displays listed below.</td>
</tr>
</tbody>
</table>

E. Pressure Accuracy

Step 1 Adjust the flow restrictor for 0 (+0.5) LPM on the flowmeter.

Step 2 Record the following unit values on the data sheet:
 a) Set pressure value from Vision display.
 b) Outlet pressure value from Vision display (Bottom number while in parameter)
 c) “Unit Outlet Pressure” on PC/Laptop.
 d) “Patient Pressure” on PC/Laptop.
 e) Manometer pressure

Step 3 Verify all pressure readings are within specification (i.e. ± 2 cm H2O of the Manometer reading).

Step 4 Set the unit pressure for 10 cm H2O and repeat steps 2-4.

Step 5 Set the unit for a pressure of 20 cm H2O, adjust the flow restrictor to 30 (± 3) LPM and repeat steps 2-4.

F. Flow Accuracy

Step 1 Leave the CPAP pressure set to 20 cm H2O.

Step 2 Set the flow restrictor for 0 LPM (+0.5) flow rate.

Step 3 Record the flow meter reading.

Step 4 Record the COMPENSATED TOTAL FLOW from the PC/Laptop.
Step 5 Verify the compensated total flow values are within specification.

Step 6 Set the flow restrictor for 10, 60, and 120 LPM (± 1 LPM) and repeat steps 3-5.

Step 7 While at 120 LPM, verify the pressure is 20 cm H₂O ± 2 cm H₂O.

G. Dynamic Pressure Regulation

Step 1 Turn the unit Off.

Step 2 Disconnect the flow restrictor from the flow meter.

NOTE: The test lung should not be connected at this time.

Step 3 Connect a whisper swivel to the patient tubing at the output of the flow meter and plug the end. Turn the unit On. Wait for the Test Exhalation Port Screen to appear.

Step 4 Press Test Exh Port then Start Test. Follow the on screen instructions as appropriate until “TEST COMPLETE” is displayed.

NOTE: Do not block the slots on the Whisper Swivel while the Exhalation Port Test is in progress.

Step 5 Press MONITORING to exit then press PARAMETERS.

Step 6 Ensure that the unit is still in CPAP mode, set at 20 cm H₂O.

Step 7 Remove the plug and connect the test lung. (Compliance set to 0.05, Parabolic Resistor RP 20). **See Figure 8-7 for setup instructions.**

Step 8 Press MONITORING and verify that the unit is in “Waveform” display.

Step 9 Manually operate the test lung to create a uniform waveform on the Vision flow display with peaks approaching 100 L/Min and a rate of approximately 30 BPM (one every two seconds). While doing this, observe the manometer reading.

Step 10 Verify the manometer reading to be within ± 2 cm H₂O of the unit’s set value.
Figure 8-7
H. S/T Performance

Step 1 Press MODE, then S/T. Leave the test lung connected.

Step 2 Select and set the following.

- \(IPAP = 35 \text{ cm H}_2\text{O} \)
- \(EPAP = 5 \text{ cm H}_2\text{O} \)
- \(\text{Rate} = 10 \text{ BPM} \)
- \(\text{Timed Insp} = 2.5 \text{ sec} \)
- \(\text{IPAP Risetime} = .05 \text{ sec} \)

Step 3 Press Activate New Mode when ready to continue. Allow the unit to cycle a few times.

Step 4 Verify that the unit is cycling between low and high pressure by observing the waveforms on the Vision pressure display.

Step 5 Verify the Manometer readings for IPAP pressure and EPAP pressure are within \(\pm 2 \text{ cm H}_2\text{O} \) of their settings.

Step 6 Record the BPM. Acceptance range is 9.3 to 10.8 BPM.

I. Options and Controls

Step 1 Press MONITORING then press Options.

Step 2 Press Invert. Verify function, and press again to return.

Step 3 Press Bar Graph. Verify that the screen displays bar graphs. Press again to return to waveform.

Step 4 Press Test Alarms. An audible tone should occur along with alarm messages displayed briefly at the top of the screen. The Check Vent and Vent Inop symbols will light.

Step 6 If desired, press the key for Time at P to reset.

Step 7 Press System Info and record the software version, if the Oxygen Module is installed, and which Alarm Module is installed.
Step 8 Press **MONITORING**.

Step 9 Press **FREEZE/UNFREEZE** and observe that the graphic displays have stopped updating. Press **FREEZE/UNFREEZE** again to resume.

Step 10 Press **SCALE**. Press **P** and change the scale by rotating the knob and observe a change in the displayed waveform. Set back to 45 cm H₂O. Press **MONITORING** to exit.

J. Alarms

Step 1 Disconnect the manometer tubing from the Vision Pressure Port. In a few seconds, an alarm will sound and **ProxLine** and/or **Lo P Disc** will be displayed in the Alarm message window at the top of the screen.

Step 2 Replace the tubing and the alarm will be silenced. Press **ALARM RESET** and the alarm will reset.

Step 3 Pull the AC power cord from the unit. An alarm should sound and the “wrench” icon will light.

Step 4 Turn the unit Off, wait for the alarm to stop and then wait 10 seconds minimum.

Step 5 Plug the AC power cord into the unit and turn the unit On.

Step 6 Verify that the unit powers up without alarming.

NOTE: For software versions 11.2 and higher, the “Loss of AC Power” indication will be flashing in the display area. Press the Alarm Reset to clear and continue.

Step 7 Turn off the unit.
BiPAP Vision Oxygen Module Testing for S/N 1007401-108343

Note: This test should only be performed once for affected units. If the Oxygen Module has been replaced with a new type, or if your unit does not have a serial number on the oxygen module label, this test does not need to be performed.

Purpose:

1. To perform an additional test on BiPAP Vision units from serial number 107401 to 108343 (inclusive). This procedure must be done the first time a Vision that falls within the above listed serial number range is returned for service for any reason. This procedure is to be performed after the unit passes system final test found in the service manual.

2. This procedure must also be performed on any Oxygen Module repair kit from serial number 300000 to 301249 (inclusive) that has been installed into any unit. The serial number is located on the cover. Repair parts 582142 and 1004977 are made up of these serial numbers, along with the production units listed above.

This test will verify the ability of the oxygen delivery subassembly to adequately supply the required flow needed to yield a specified oxygen concentration at the maximum unit flow rate. Some of these may have had a vendor assembly problem. Any faults will require the replacement of the Oxygen Module assembly.

Test Equipment:

Same as used with oxygen testing found in step K of the System Final Test.

Test Setup:

See figure 8-8, except substitute the flow restrictor in the circuit for the test lung. Begin with a small leak.

Procedure:

1.) Turn the unit on.

2.) After the System Self Test completes, press **MONITORING**.

3.) Press **PARAMETERS** button and set the following unit parameters:

- **IPAP** = 40 cm H2O
- **EPAP** = 20 cm H2O
- **RATE** = 10 BPM
- **TIMED INSP.** = 3.0 sec
- **IPAP RISETIME** = .05 sec
- **O2%** = 21%
4.) Slowly open the flow restrictor and verify the flowmeter reads a minimum of 130 LPM for four consecutive breaths during the IPAP portion of the cycle. If the unit activates the “Disconnect” alarm, it may be necessary to adjust the flow restrictor valve to a lower flow and slowly re-open to reach this flow rate.

5.) Set the O2% parameter to 100% and wait for oxygen analyzer reading to stabilize.

6.) For the unit to pass, the oxygen analyzer reading must remain between 90% and 109% inclusive for four consecutive breaths. If any unit fails, the Oxygen Module subassembly must be replaced and the unit retested.

7.) When complete, set the unit parameters as follows:
 - IPAP = 15 cm H2O
 - EPAP = 5 cm H2O
 - RATE = 10 BPM
 - TIMED INSPIR. = 1.0 sec
 - IPAP RISETIME = .05 sec
 - O2% = 21%

8.) Press MONITORING button.

9.) Close the oxygen tank valve.

10.) Turn power off and disconnect test equipment.

11.) Test Complete.
K. Oxygen Module Operation

Note: To perform this test it is necessary that the Vision unit being tested have at least 11.8 / 12.4 / 13.4 software. If your Vision unit has earlier software, it is mandatory that it be upgraded before performing this test.

Note: See Figure 8-8 for assistance in connecting oxygen analyzer.

WARNING: Oxygen supports combustion. Do not use oxygen while smoking or in the presence of an open flame.

WARNING: Never use the analyzer to measure gas with a high oxygen content following use on air with an oil vapor content. The oil vapor will contaminate the tubing and may result in a fire on contact with high oxygen levels.

Oxygen Module Test Procedure

Step 1
Prior to performing this test, a visual inspection should be made of the internal components of the oxygen delivery system including tubing, to ensure that there are no faulty items.

Step 1A
Connect the 6 foot smooth inner lumen tubing from the outlet of the Vision, to the Whisper Swivel, then to a pressure pick-off port (O2 port) and then to the TTL Lung (or equivalent). A small length of tubing (approximately 6 inches) may be needed between the pressure pick-off port and the test lung.

Connect the oxygen analyzer cell in the patient circuit.
Put the pressure tubing from the pick-off port to the unit’s patient pressure connection.

Or, Using a “T” connector, connect the pressure pick-off port, the unit’s patient pressure connection and the oxygen analyzer inlet together, whichever applies.

Set the test lung to have a compliance of 0.04 and a parabolic resistance of 20.

Step 2
Turn on the Vision unit.

Step 3
On the unit, press Parameters and set the following unit parameters.

\[
\begin{align*}
\text{IPAP} &= 20 \text{ cm H}_2\text{O} \\
\text{EPAP} &= 4 \text{ cm H}_2\text{O} \\
\text{RATE} &= 15 \text{ BPM} \\
\text{Timed Insp.} &= 1.0 \text{ sec} \\
\text{IPAP Risetime} &= .05 \text{ sec} \\
\text{O}_2\% &= 21%
\end{align*}
\]
Figure 8-8
Step 4 Press **Monitoring**. Ensure that the tidal volume reading on the Vision (Vt) is at 500 ml, +/- 20 ml (480 to 520 ml). If not raise or lower the IPAP pressure until the proper tidal volume reading is obtained.

Step 5 Connect the O₂ line to the Oxygen Module. Open the O₂ cylinder valve. Ensure that the O₂ regulator is set at 50 psi.

Step 6 Wait for the Oxygen Analyzer to stabilize and verify that the reading is 18% to 24%.

Note: Readings should be stable after 8 to 10 breaths. Some variance in the reading may occur, depending on the quality of the analyzer being used.

Step 7 Press **Parameters** then set % O₂ and adjust for 30% O₂ level. Wait for the Oxygen Analyzer to stabilize and verify that the reading is between 27% and 33% (inclusive). If the tidal volume reading on the Vision falls out of the acceptable range, adjust the IPAP pressure until the tidal volume falls within the acceptable range before taking the reading.

Step 8 Set the O₂ to 100%.

Step 9 Close the O₂ cylinder valve. Disconnect the Oxygen hose from the back of the Vision.

Step 10 The unit should alarm for no O₂ Flow at 15 Breaths or less.

Step 11 Reconnect the Oxygen hose to the back of the Vision and Open the O₂ cylinder valve, set the O₂ to 40% and press **Alarm** reset. Verify that no alarms exist after 8 breath cycles.

Step 12 Wait for the Oxygen Analyzer to stabilize and verify that the reading is between 36% and 44% (inclusive). If the tidal volume reading on the Vision falls out of the acceptable range, adjust the IPAP pressure until the tidal volume falls within the acceptable range before taking the reading.

Step 13 Set the unit for 60% O₂. Wait for the Oxygen Analyzer to stabilize and verify that the reading is between 54% and 66% (inclusive). If the tidal volume reading on the Vision falls out of the acceptable range, adjust the IPAP pressure until the tidal volume falls within the acceptable range before taking the reading.

Step 14 Set the unit for 80% O₂. Wait for the Oxygen Analyzer to stabilize and verify that the reading is between 72% and 88% (inclusive). If the tidal volume reading on the Vision falls out of the acceptable range, adjust the IPAP pressure until the tidal volume falls within the acceptable range before taking the reading.

Step 15 Set the unit for 100% O₂. Wait for the Oxygen Analyzer to stabilize and verify that the reading is between 90% and 109% (inclusive). If the tidal volume reading on the Vision falls out of the acceptable range, adjust the IPAP pressure until the tidal volume falls within the acceptable range before taking the reading.

Step 16 Close the O₂ cylinder valve. Disconnect the O₂ input line.

NOTE: If O₂ Module Test Fails, perform the “Oxygen Flow Module Test” found in section 8.11. Then re-run step K above.
Chapter 8: Testing and Calibration

System Final Test (Continued)

L. PAV/T mode (if installed)

Step 1 Select Mode.

Step 2 Select PAV/T.

Step 3 Activate the PAV/T mode and verify the mode features are displayed on the screen and that no errors or alarms occur.

NOTE: No further testing of the PAV/T mode is needed since the functioning of the PAV/T mode is directly linked to the S/T mode through software. The S/T specifications were verified earlier in the system final test.

Step 4 Turn off the unit, disconnect the test circuit, and remove the power.

Step 5 Install the top enclosure.

M. Earth Resistance

Step 1 Measure and record the earth resistance value. Test current is 25 amps. The value must be less than 0.10 Ohms (W) to pass.

N. Earth Leakage Current

Step 1 Measure and record the Normal Pole, No Earth, L2 earth leakage current. The value must be less than 300 microamps to pass.

Step 2 Measure and record the Reverse Pole, No Earth, L2 earth leakage current. The value must be less than 300 microamps to pass.

Step 3 Measure and record the Reverse Pole, No Earth, No L2 earth leakage current. The value must be less than 1,000 microamps to pass.

Step 4 Measure and record the Normal Pole, No Earth, No L2 earth leakage current. The value must be less than 1,000 microamps.
Note: Refer to chapter 3 of this manual for details of the operation of this feature.

Purpose:

This test verifies the operation of the Nurse Call/Remote Alarm output connector on the rear panel of the BiPAP Vision unit. This is an optional test and is provided to use as specified by internal protocol. The option 1, 2 and 3 tests can be performed independently or as a whole, depending on requirements. The unit is shipped from the factory set at the option 2 setting.

Equipment:

Fluke DVM, or equivalent
0.25" Test Orifice (p/n 332353), or occluded patient circuit

Jumper Location Photo:

![Jumper Location Photo](image)

Option 1 Test (Remote Alarm)

1. JP1 and JP2 on the MC board are set at 2,3.

2. Using a DVM and the unit turned off, measure the continuity across the High and Low of the Nurse Call/Remote Alarm output connector. Value should be approximately 48.6K to 53.7K.

3. Place the test orifice on the unit. Turn the Vision on and activate any patient alarm. (For example, the Apnea alarm could be set to 20 seconds)

4. Measure the continuity on the same connector and it now should be an open circuit.

5. Turn unit off.
Option 2 Test (Nurse Call, normally closed setting)

1. JP1 on the MC board is set at 2,3. JP2 is set at 1,2.

2. Using a DVM and the unit turned off, measure the continuity across the High and Low of the Nurse Call/Remote Alarm output connector. A closed circuit should be measured.

3. Place the test orifice on the unit. Turn the Vision on and activate any patient alarm (For example, the Apnea alarm could be set to 20 seconds).

4. Measure the continuity on the same connector and it now should be an open circuit.

5. Turn unit off.

Option 3 Test (Nurse Call, normally open setting)

1. JP1 and JP2 on the MC board are set to 1,2.

2. Using a DVM and the unit turned off, measure the continuity across the High and Low of the Nurse Call/Remote Alarm output connector. An open circuit should be measured.

3. Place the test orifice on the unit. Turn the Vision on and activate any patient alarm (For example, the Apnea alarm could be set to 20 seconds).

4. Measure the continuity on the same connector and it now should be a closed circuit.

5. Turn unit off.

Upon completion, set the unit to the desired option.

Q
Final Test Data Sheet

Step 1 Sign and date completed Final Test Data Sheet.
BiPAP Vision Final Test Data Sheet

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Operating Time</td>
<td>Service Notification</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Indicator and LCD Controls

<table>
<thead>
<tr>
<th>Step</th>
<th>Control</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3</td>
<td>Power Indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>Brightness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>Contrast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure Accuracy (see step E-3 for guidelines)

<table>
<thead>
<tr>
<th>Step</th>
<th>Pressure</th>
<th>Set</th>
<th>Outlet</th>
<th>Unit</th>
<th>Patient</th>
<th>Manometer</th>
<th>Spec</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-2</td>
<td>5 cm H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+/- 2 cmH₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-4</td>
<td>10 cm H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+/- 2 cmH₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-5</td>
<td>20 cm H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+/- 2 cmH₂O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Accuracy

<table>
<thead>
<tr>
<th>Step</th>
<th>Flow Setting</th>
<th>Flowmeter</th>
<th>Compensated Total Flow</th>
<th>Pressure</th>
<th>Specification</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-2 to F-5</td>
<td>0 LPM</td>
<td></td>
<td></td>
<td></td>
<td>-5 to 5 LPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-6</td>
<td>10 LPM</td>
<td></td>
<td></td>
<td></td>
<td>4.2 to 15.8 LPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-6</td>
<td>60 LPM</td>
<td></td>
<td></td>
<td></td>
<td>50.2 to 69.8 LPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-6</td>
<td>120 LPM</td>
<td></td>
<td></td>
<td></td>
<td>105.6 to 134.4 LPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-7</td>
<td>120 LPM</td>
<td></td>
<td></td>
<td></td>
<td>18.0 to 22.0 cm H₂O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamic Pressure Regulation

<table>
<thead>
<tr>
<th>Step</th>
<th>Test</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-4</td>
<td>Exhalation Port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-9</td>
<td>Flow Waveforms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-10</td>
<td>Manometer Reading</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S/T Performance

<table>
<thead>
<tr>
<th>Step</th>
<th>Test</th>
<th>Reading</th>
<th>Specification</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-4</td>
<td>Cycling</td>
<td>Visual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-5</td>
<td>IPAP/EPAP</td>
<td>+/- 2 cm H₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-6</td>
<td>BPM</td>
<td>9.3 to 10.8 BPM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Options and Controls

<table>
<thead>
<tr>
<th>Step</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2 to I-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alarms

<table>
<thead>
<tr>
<th>Step</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-1 to J-6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oxygen Module (if installed)

<table>
<thead>
<tr>
<th>Step</th>
<th>Oxygen Set Point</th>
<th>Oxygen Analyzer</th>
<th>Specification</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-6</td>
<td>21%</td>
<td></td>
<td>18.0 to 24%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-7</td>
<td>30%</td>
<td></td>
<td>27.0 to 33%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-10</td>
<td></td>
<td>Alarm Activates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-12</td>
<td>40%</td>
<td></td>
<td>36 to 44%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-13</td>
<td>60%</td>
<td></td>
<td>54 to 66%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-14</td>
<td>80%</td>
<td></td>
<td>72 to 88%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-15</td>
<td>100%</td>
<td></td>
<td>> 90%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAV/T Mode (if installed)

<table>
<thead>
<tr>
<th>Step</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Earth Resistance and Leakage Current (Optional)

<table>
<thead>
<tr>
<th>Step</th>
<th>Test</th>
<th>Reading</th>
<th>Specification</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>Earth Resistance</td>
<td></td>
<td>< 0.100 Ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-1</td>
<td>Norm. Pol, No Earth, L2</td>
<td></td>
<td>< 300 microamps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-2</td>
<td>Rev. Pol, No Earth, L2</td>
<td></td>
<td>< 300 microamps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-3</td>
<td>Rev. Pol, No Earth, L2</td>
<td></td>
<td>< 1,000 microamps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-4</td>
<td>Norm Pol, No Earth, No L2</td>
<td></td>
<td>< 1,000 microamps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nurse Call/Remote Alarm (optional test for S/N > 106000)

<table>
<thead>
<tr>
<th>Step</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing Verification

<table>
<thead>
<tr>
<th>Tested By: (Full Signature)</th>
<th>Date</th>
</tr>
</thead>
</table>
8.9 PC / Laptop Setup Procedure

Purpose

This procedure is to be used to set up the PC / Laptop required for testing and troubleshooting of the BiPAP Vision.

Note: The Vision requires no special data acquisition software. All necessary software is contained within the unit.

Equipment

- PC/Laptop Computer
- Serial Cable
- Test Cable for serial number 105999 and lower (RI P/N 582161)
- Test cable for serial numbers 106000 and higher (RI P/N 1004823), or upgraded hybrid units.
- Test cable for upgraded hybrid units also required (RI P/N 1004699)

Note: For any unit 105999 and lower that has had a new MC board installed, test cable 1004823 will be used. Test cable 582161 will still need to be used on the DC board.

Equipment Setup

Step 1
Connect one end of the test cable to the RS-232 communications port on the PC/laptop.

Note: When connecting to a PC/Laptop, the 9 pin to 25 pin connector supplied with the test cable 582161 is not required.

Step 2
For S/N 105999 and lower: Connect the proper end of the test cable (582161) to the desired subsystem: (J3) on the Pressure Control (PC) and Main Control (MC) or (J5) on the Display Control (DC).

For S/N 106001 and higher: Connect the other end of the test cable (1004823) to the rear panel of the Vision and connect a standard computer cable to the desired selection.

For upgraded hybrid units connect ribbon cable (1004699) to the desired selection of test cable (1004823).

Step 3
Turn on the PC / Laptop.

Operating System Setup

A. Microsoft Windows® with Hyperterminal.

Step 1
Open the following:
- Start
- Programs
- Accessories
- Hyperterminal

Step 2
From Connection Description, name the file if it is to be saved, select the umbrella with phone icon, then click OK.
Step 3 In Connect To, select COM1 in Connect Using, then click OK.

Step 4 In COM1 Properties, Port Settings, set the following:

- Bits per Second: 19,200
- Data Bits: 8
- Parity: None
- Stop Bits: 1
- Flow Control: Xon / Xoff.

Step 5 Click OK to activate the settings. At this point, a blinking cursor will appear on the screen.

Step 6 If necessary, check the ASCII settings. Go to File, Properties, Settings, ASCII Setup.

Step 7 Enter the appropriate command for the desired selection below. No typed letters will appear on the PC or Laptop. Data will appear after the code is entered.

Step 8 If screen rolling go to: File, Properties, Settings, Emulation, VT52, OK

Note: For an existing Vent Inop condition, the MC and DC will output full screens of information. The PC only outputs one line of error code information. No command and needs to be entered. During normal operation, the full command needs to be entered.

B. Microsoft Windows® V. 3.1

Step 1 From Program Manager, open Accessories.

Step 2 From Accessories, open Terminal.

Step 3 Under Settings, open Terminal Emulation then select DEC VT-52, and click OK.

Step 4 Again under Settings, open Terminal Preferences then set the following:

- Line Wrap: On
- Columns: 80
- Cursor: Block, Blink
- Show Scroll Bars
- Use function arrows and control (Ctrl) keys for Windows.

Step 5 Click OK
Step 6 Again under Settings, open Communications then set the following:

- Baud Rate; 19,200
- Data Bits; 8
- Stop Bits; 1
- Parity; None
- Flow Control; Xon / Xoff
- Connector; COM 1 or COM 2 (which ever is being used).

Step 7 Click OK

Step 8 Turn on the Caps Lock.

Step 9 Enter the appropriate command for the test being performed. See the list of commands on the next page.

Commands Options:

SJO Transfer of total operating hours (MC subsystem connection).

SJB Blower/valve calibration (PC subsystem connection).

SJL System final test and limited PC function (PC subsystem connection).

SJP PC error code info, including operating parameters (PC subsystem connection).*

SJM MC error code information (MC subsystem connection).*

SJD DC error code information (DC subsystem connection).*

SJE Check Vent error code history (MC subsystem connection).

SJC For determining type of breath triggering (MC subsystem connection).

* If the unit is in a Vent Inop condition, the current error will automatically appear.
8.10 Test Cable Usage Definitions

For Vision units serial number <106K

Test Cable 582161 is to be used to test/calibrate BiPAP Vision units with serial numbers <106K.

For Vision units serial number <106K that are upgraded hybrid units (new PC/MC installed)

Test Cable 1004823, along with the Ribbon Cable 1004699 (see note below), is to be used to test/calibrate BiPAP Vision units with serial numbers <106K that are upgraded hybrid units (repaired using the new PC/MC circuit boards). A standard serial I/O cable is used in conjunction with this to connect to the PC/laptop. Any unit still having the original Display Control Subsystem will still need Test Cable 582161 connected to the DCS to test the unit.

Note: The Ribbon cable will be temporarily installed and then removed after testing. Make sure that the metal connector housing does not make contact with any components within the Vision unit during use.

For Vision units serial number >106K

Test Cable 1004823 is to be used to test/calibrate BiPAP Vision units with serial numbers >106K. A standard serial I/O cable is used in conjunction with this to connect to the PC/laptop.
8.11 Oxygen Flow Module Calibration

Purpose:
To field adjust the zero flow voltage on the main circuit board of the Oxygen Module Assembly. This test can be performed on any Oxygen Module that is suspected to be out of tolerance. The Oxygen Module testing in the System Final Test should be performed after this test is completed to confirm this module is now operational. If acceptable, the complete System Final Test needs to be performed.

Equipment:
Digital Multimeter, Fluke 87 or equivalent (3 ½ digit)

Equipment Set Up:
1. Remove the complete oxygen module assembly (except the ground wire and ribbon cable) to be able to easily perform this test. The assembly can then set on the table next to the Vision unit.
2. Connect the DVM to TP 9 with respect to TP 13 (ground).

Procedure:
1. Turn the Vision unit on.
2. Allow the unit to complete the “System Self Test In Progress”. Do not put the unit into Monitoring mode.
3. Adjust R41 for a value of 0.225 to 0.235 volts DC.
4. Re-assemble unit (if necessary)

NOTE: If the measured Oxygen concentration is still not in specification after completion of this test, follow standard repair practices to obtain acceptable results.
Chapter 9: PAV/T or EPROM Upgrade Installation Instructions

9.1 PAV/T Mode or EPROM Upgrade Installation ... 9-2

9.2 Oxygen Baffle Installation Instructions (for units S/N <106K) 9-6
9.1 BiPAP Vision PAV / T Mode or EPROM Upgrade Installation

Included in Upgrade Kits

<table>
<thead>
<tr>
<th>EPROM (DC or DCS)</th>
<th>Tools Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPROM (PC or PAS)</td>
<td>Phillips screwdriver</td>
</tr>
<tr>
<td>EPROM (MC or MCS)</td>
<td>Long-shaft, small, flat-blade</td>
</tr>
<tr>
<td>Alarm B PAL (For PAV/T only)</td>
<td>Extraction Tool</td>
</tr>
</tbody>
</table>

NOTE: For PAV/T mode, the Alarm B PAL on the MC board will also need to be changed.

CAUTION: To ensure proper operation of the unit, the MC, PC, and DC EPROM’s **MUST** be the same revision.

Procedure

Removed / Installed During Process

- Top enclosure
- Front panel enclosure
- Display Control Subsystem (DC), partially
- Pressure Control Subsystem (PC)
- EPROM (DC)
- EPROM (PC)
- EPROM (MC)
- Alarm B PAL (install only if not already a PAV/T unit)

WARNING: Electrical shock hazard: Disconnect the electrical supply before attempting to make any repairs to the device.

CAUTION: Electrical components used in this device are subject to damage from static electricity. Repairs made to this device must be performed only in an antistatic, ESD-protected environment.
Step 1 Installing the EPROM Upgrade or PAV/T Mode

NOTE: Each EPROM in the RP kit is labeled for identification purposes. During this procedure, ensure that the correct EPROM has been identified for each installation.

a. Locate the new EPROM for the DC.
b. Remove the DC. Using an appropriate extraction tool, remove the existing EPROM.

NOTE: It may be possible to replace this EPROM by partially removing the DC Board. Leave the keypad and LCD connections attached and remove the retaining screws to be able to carefully rotate the board upwards to expose the EPROM side.

c. Carefully insert the new DC EPROM.

NOTE: Ensure proper orientation before insertion. Flat edge of EPROM to the flat edge of the socket.

d. Re-secure the DC to the front panel.
e. Locate the new EPROM for the PC.
f. Place the PC on an appropriate work surface. Using an appropriate extraction tool, remove the existing EPROM.
g. Carefully insert the new PC EPROM.

NOTE: Ensure proper orientation before insertion. Flat edge of EPROM to the flat edge of the socket.

h. Set the PC aside for installation later in this procedure.

i. Locate the new EPROM and Alarm B PAL (PAV/T mode only) for the MC.

j. Using an appropriate extraction tool, remove the existing EPROM from U46.
NOTE: If necessary, store the removed EPROM in an approved antistatic bag or box.

k. Carefully insert the new MC EPROM.
l. If necessary, remove the Alarm PAL (PAV/T mode installation only).
m. Carefully insert the new Alarm B PAL (PAV/T mode installation only).

NOTE: Ensure proper orientation before insertion. Flat edge of EPROM to the flat edge of the socket.

Step 2 Testing

To ensure the integrity of the unit, the Run-In Cycle and the System Final Test found in Chapter 8 must be performed.
9.2 BiPAP Vision Oxygen Baffle Installation Instructions (P/N 1004705)

Purpose

To provide the necessary information to install the Oxygen Baffle into BiPAP Vision units less than serial number 1006001.

Oxygen Baffle Description

The oxygen baffle provides a better mix of oxygen and air to improve the Air Flow Module (AFM) flow measurements.
Procedure

1. Remove:
 - Top Enclosure
 - Front Panel
 - AFM
 - Oxygen module outlet tubing support bracket (no longer needed)
 - "T" tubing (no longer needed)
 - 22mm coupling at the Oxygen Module outlet (no longer needed)
2. On the AFM assembly, install the two nylon washers provided in the kit under the two mounting screws for the AFM flowbody to allow proper clearance for the new Oxygen Baffle.

- Remove the two Phillips screws that hold the flow body to the circuit board. Be careful not to cause any damage to the thermistor wiring connection.
- Place the two nylon washers between the AFM flowbody and the circuit board.
- Install the screws and securely tighten.

![New, Final AFM Assembly](image_url)

Nylon Washers (2)

AFM Mounting Screws (2)

Nylon Washers (2)
3. Place the Oxygen Baffle, as far as possible, onto the ILFR with the oxygen inlet port pointing directly upwards and the flow direction arrow towards the front of the unit.

4. While keeping the AFM lifted slightly upwards, gently insert it into the Oxygen Baffle outlet until the AFM is aligned with its three mounting posts on the bottom enclosure. A back and forth motion may be required. Push down on the AFM circuit board at the 3 mounting post locations to secure it into place.

5. Re-install:
 • Remaining AFM connections
 • Oxygen tubing to baffle
 • Front enclosure
 • Top enclosure

6. Perform the BiPAP Vision System Final Testing from Chapter 8 of the service manual.
Chapter 10: Summary of Upgrades for Repairs of Vision units with Serial Numbers 100500 to 106000

10.1 Summary of upgrades for repairs of Vision units with serial numbers 100500 to 106000 ... 10-2

10.2 Repair Kits No Longer Manufactured ... 10-5

10.3 Installation/Upgrade Instructions for Repair Parts 1004713 and 1000356 for serial number units less than 106001 10-6
10.1 Summary of upgrades for repairs of Vision units with serial numbers 100500 to 106000

Note: For any of the following upgrades, the new Nurse Call/Remote, RS-232, Oxygen Baffle, and Ground Stud will not be implemented. Existing Keypad and labeling will remain the same. Language additions are only available in version 13.0 and higher. A non-PAV and PAV kits will be available.

10.1.1 Upgrade #1 – P/N 1004713, RP-Vision PC/MC Upgrade (without PAV) (2 Board Upgrade)
For replacement of the PC (582146) or MC (582140) in s/n’s 100500 to 105999 without PAV option. The following items will be included in this kit:

a) MC board and version 12 EPROM
b) PC board and version 12 EPROM
c) DC version 12 EPROM
d) DC ICB connector (must be soldered onto DC board)
e) New ICB cable
f) Revised longer AFM harness
g) Revised longer Power harness
h) PC/MC board spacers
i) Nut for MC center board spacer
j) Pressure tubing
k) Cable clamps
l) Screw for center cable clamp
m) MC ground screw
n) Top cover screws

10.1.2 Upgrade #1A – P/N 1000356, RP-Vision PC/MC Upgrade (with PAV)
For replacement of the PC (582146) or MC (582140) in s/n’s 100500 to 105999 with PAV option. The following items will be included in this kit:

a) MC board and version 12 PAV EPROM
b) PC board and version 12 PAV EPROM
c) DC version 12 PAV EPROM
d) DC ICB connector
e) New ICB cable
f) Revised longer AFM harness
g) Revised longer Power harness
h) PC/MC board spacers
i) Nut for MC center board spacer
j) Pressure tubing
10.1.3 Upgrade #2 – P/N 1004714, RP-Vision DC Upgrade (without PAV) (3 board upgrade)

For replacement of the DC (582133) to add the additional languages in s/n’s 100500 to 105999 without PAV, the following items must be installed and will be included in this kit (note that new PC and MC boards are also installed). If necessary, a new test cable (1004823) and RS-232 cable (1004699) will also have to be ordered (refer to Section 8.10 for further details).

a) DC board and 13 EPROM
b) PC board and version 13 EPROM
c) MC board and version 13 EPROM
d) Revised longer AFM cable
e) Power cable, PSS to PC
f) Power cable, PC to DC
g) ICB cable
h) PC/MC board spacers
i) Nut for MC center board spacer
j) Pressure tubing
k) Cable clamps
l) Screw for center cable clamp
m) MC ground screw
n) Top cover screws

10.1.4 Upgrade #2A – P/N 104707, RP-Vision DC Upgrade (with PAV)

For replacement of the DC (582133) to add the additional languages in s/n’s 100500 to 105999 with PAV, the following items must be installed and will be included in this kit (note that new PC and MC boards are also installed). If necessary, a new test cable (1004823) and RS-232 cable (1004699) will also have to be ordered.

a) DC board and 13 PAV EPROM
b) PC board and version 13 PAV EPROM
c) MC board and version 13 PAV EPROM
d) Revised longer AFM cable
e) Power cable, PSS to PC
f) Power cable, PC to DC
Chapter 10: Summary of Upgrades

10.1.5 Upgrade #3 – P/N 1000286, RP-EPROM Upgrade Kit (without PAV)

This kit provides a software only update to provide new features to units s/n’s 100500 to 105999. The O₂% parameter will be retained when switching between modes of operation, pressure increase from 10cm H₂O to 15cm H₂O during disconnect alarm conditions, and the revised alarm sounds for different alarms will be implemented.*

The following items are included in this kit:

a) MC version 11 EPROM
b) PC version 11 EPROM
c) DC version 11 EPROM

10.1.6 Upgrade #3A – P/N 1003524, RP-EPROM Upgrade Kit (with PAV)

This kit provides a software only update to provide new features to units s/n’s 100500 to 105999 along with the PAV option. The O₂% parameter will be retained when switching between modes of operation, pressure increase from 10cm H₂O to 15cm H₂O during disconnect alarm conditions, and the revised alarm sounds for different alarms will be implemented.*

The following items are included in this kit:

d) MC version 11 PAV EPROM
e) PC version 11 PAV EPROM
f) DC version 11 PAV EPROM
g) Alarm B option PAL (not used for units already having PAV)

* 5 beep tone sequence for Patient Alarms
3 beep tone sequence for Check Vent Alarms
Soft click for an attempt to change a selection that is out of range.
Original solid tone for Vent Inop Alarms
10.2 Repair Kits No Longer Manufactured
The following table is a listing of the repair kits that will no longer be available. It also gives a description to the reasoning behind the decision and the replacement kit to be used as a new substitute.

<table>
<thead>
<tr>
<th>RP Kit No Longer Manufactured</th>
<th>Reasoning</th>
<th>Replacement Kit to be Used in Place of This</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation Fan Muffler, French (1000741)</td>
<td>Replaced language specific items with the international symbols style.</td>
<td>1005618, Circulation Fan Muffler International.</td>
</tr>
<tr>
<td>Spanish (1000738)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German (1000729)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPROM Upgrade (582180)</td>
<td>New Kit created to avoid confusion.</td>
<td>1000286, Vision EPROM Kit (non PAV) for S/N <106K that have not been upgraded already.</td>
</tr>
<tr>
<td>Fuse, International (582099)</td>
<td>Existing RP kit already replaces this.</td>
<td>1000750</td>
</tr>
<tr>
<td>Mail Control Subsystem, MC (582140)</td>
<td>Design improvements have made this item obsolete.</td>
<td>Upgrade kit 1004713 (non PAV) or 1000356 (PAV). See Section B for details.</td>
</tr>
<tr>
<td>Oxygen Module Assembly, French (582254)</td>
<td>Replaced language specific items with the international symbols style.</td>
<td>1004977, Oxygen Module International.</td>
</tr>
<tr>
<td>Spanish (582255)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian (1003547)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German (582220)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAV/T Option (1000747)</td>
<td>New kit created to avoid confusion.</td>
<td>1003524, Vision EPROM Kit (with PAV) for S/N <106K that have not been upgraded already.</td>
</tr>
<tr>
<td>Power Line Filter (1000745)</td>
<td>Engineering has included this item into the AC inlet design.</td>
<td>582138</td>
</tr>
<tr>
<td>Pressure Airflow Subsystem, PC (582146)</td>
<td>Design improvements have made this item obsolete.</td>
<td>Upgrade kit 1004713 (non PAV) or 1000356 (PAV). See Section 10.1 for details.</td>
</tr>
<tr>
<td>Touchpad, Spanish (582256)</td>
<td>Replaced language specific items with the international symbols style.</td>
<td>1004712, Universal Keypad.</td>
</tr>
<tr>
<td>French (582257)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.3 Installation/Upgrade Instructions for Repair Parts
1004713 and 1000356 (PC/MC Upgrade, with and without PAV, for serial number units less than 106000)

Caution: All work is to be done following proper ESD guidelines.

Note: The original Total Operating Hours should be recorded, if possible, to enter onto the new unit when this upgrade is complete.

Additional Items Required:
- Ribbon Cable used for testing (RI # 1004699)
- BiPAP Vision Service Manual (RI # 582160)
- Test Cables (RI # 582161, and 1004823)
- Other miscellaneous items as called out in the service manual to support testing after this upgrade is performed as defined in this procedure.

Remove the following from the existing unit with serial number less than 106000:
1. Top cover.
2. Front Panel.
3. DCS.
4. Inlet tubing, Blower Muffler and Blower* (may need to partially remove the Oxygen assembly to access the back blower mounting screw).
5. All connections to the PAS.
6. PAS.
7. MCS.
8. The two cable clamps from the left side of the unit that hold the blower, power supply, and main power indicator wiring.

* It is possible to just remove the front two blower mounting screws and then when required, partially lift upwards on the front of the blower assembly to perform this upgrade.

The following will no longer be needed:
1. Power cable (gray) that originally connected to the PSS, PAS, and DCS.
2. ICB cable.
3. AFM to PC ribbon cable.
4. 4 of the 5 screws that held the MCS in place.
5. PAS (including software).
6. MCS (including software).
7. DCS software.
8. Two top cover screws.
From the repair kit 1004713 or 1000356 (PAV):

1. Locate the EPROMs (version 12) and place them into their respective locations on the MC and PC boards.

2. For non-PAV/T units, remove the original Alarm PAL located in U41 in the MCS and place it in the new MC board. For PAV/T units, install the PAL provided with upgrade kit 1000356 into U41 in the MC board.

3. Remove the DCS from the front panel. Install the DCS EPROM into its respective location.

4. Locate the independent connector supplied with the kit. Insert it into the DCS next to the original ICB connector that is in the center of the board. It should be placed so that the keying (single open slot in the plastic body of the connector) is facing downwards. Solder in place. This will allow for the new ICB cable to be located so that the ribbon cable is downwards towards the bottom of the unit.

5. Re-install the original DCS back onto the front enclosure.

6. Install the 6-32 nut and one of the aluminum spacers onto the MC board with the spacer located on the component side of the board and the nut on the other side. The mounting hole is located by the power cable connection near the center of the board.

7. Install the MC board into the bottom enclosure. Use the existing nylon “snap” standoffs to be placed where the original ones were removed, except put the new 8-32 x 3/8 screw in the mounting hole with the ground plane around it, which is located along the transformer edge of the MC board.

8. Also for the MC, install new nylon “snap” standoffs in the front left and back left MC mounting holes. Put one of the three nylon standoffs between these two. Put one of the other two nylon standoffs in the rear behind the power supply connector and the third one opposite of this in the front of the MC board.

9. Place the original DC ground wire and screw is to put into the mounting hole with the ground plane around it on the front left side of the MC board.

10. Temporarily install the Ribbon cable, 1004699. This is not part of the kit, but should be kept on hand as part of the service tools needed to repair upgraded BiPAP Vision units s/n<106K. It will be left in only for testing purposes and must be removed afterwards.
11. Install the PC board onto the MC board standoffs making sure that the power connection near the center of the board, and the other similar connector (testing and error data) located in the front right of the board are fully seated. Also make sure that all of the nylon “snap” locks are fully engaged.

12. Mount the second aluminum standoff onto the location near the center of the PC board where the first aluminum standoff from the MC board can be seen.

13. Connect the blower, valves, circulation fan current sense, Oxygen Module ribbon cable, and the new ICB cable to the appropriate PC connection points.

14. Locate the new AFM to PC ribbon cable and install it in place. Put this on the PC connection J4 to the AFM. The other is connected to J6 for the OM ribbon connection.

15. Connect the new power supply cable to the PSS connection. Note that the new cable has 6 inches between the one end connector and the one in the middle. Connect this middle connector to the power connection on the PC board. Make a counterclockwise loop in the remaining part of the cable that will connect to the DCS board. Using the 6-32 x ¼ inch screw and cable clamp from the kit, attach the power supply cable to the center aluminum standoff in the center of the PC board. This will allow the cable to be secured, but also allow some movement of the cable during front panel removal.

16. Remove the 7 inch piece of pressure tubing that connects from the “T” fitting on the AFM that originally connected to the pressure sensor on the PAS board.

17. Locate the 3 inch piece of pressure tubing in the kit and place one end on the AFM “T” connection and the other end to the redundant pressure sensor. This is the sensor located nearest to the AFM module.

18. Re-install the blower, blower muffler and inlet tubing (if all or any of these were removed). Connect the blower connector to the PC board.

19. Re-install the front enclosure, making sure that all the proper connections are secured in place. The patient pressure tubing will go from the front enclosure to the middle pressure sensor, port on the right side.

20. Make sure all required connections are correctly made. Just a reminder to double check your work.
21. When the upgraded unit is first turned on, a Check Vent Error 301 may occur. This will clear after the Blower/Valve Calibration is performed on the unit and the unit is cycled off and then on again.

22. Using the Total Operating Hours Transfer found in chapter 8 of the BiPAP Vision service manual, put the original operating hours into the unit.

23. Perform Blower/Valve Calibration found in chapter 8 of the BiPAP Vision service manual.

Note: The PRV muffler DOES NOT get removed once this upgrade is installed into a unit.

24. Perform the Run-In Test and then the System Final Test found in chapter 8 of the BiPAP Vision service manual.

25. When complete, remove the Ribbon (1004699) cable that was temporarily installed into the MC board.

26. Install the top enclosure using the two 6-32 x ½ screws supplied with the kit.
Appendix A: Tools and Equipment

A.1 Service Tools and Supplies .. A-2
A.2 Acceptable Test Equipment .. A-3
A.3 TSI Inc. Certifier Test System .. A-6
A.1 Service Tools and Supplies

You should have the following hand tools and supplies available for troubleshooting, testing, and repair of the BiPAP Vision.

- **Common hand tools:**
 - Flat-blade screwdrivers – small (long shaft) and medium
 - Phillips screwdriver – medium
 - Nut drivers – 1/4”, 5/16”, 11/32”, and 7/16”
 - 1/4” wrench
 - Needle-nose pliers, medium

- **Antistatic work station** – minimum requirement is a grounded mat and wrist strap

- **Digital manometer** - see section A.2, A.3

- **Flowmeter** - see section A.2, A.3

- **Digital Multimeter** – see section A.2

- **PC/Laptop** – see section A.2

- **O₂ Analyzer** - see section A.2, A.3

- **Oxygen tank**, medical grade oxygen and regulator

- **Mechanical test lung** – see section A.2

- **Test Cable** – Respironics P/N 582161 or 1004823 (see test cable description, Chapter 8)

- **Pressure tubing** – 6 in., 6 ft., other misc. lengths as required

- **Tubing**, 6 ft. smooth inner lumen – Respironics P/N 301016, other misc. lengths as required.

- **Variable flow restrictor** - Respironics P/N 1006120

- **Pressure Pick-Off Port** – Respironics P/N 312710

- **Test orifice** – 0.25” – Respironics P/N 332353

- **Isopropyl alcohol**

- **Cleaner** (i.e. Fantastik®, 409®.)

- **Cleaning cloth**

- **Bacteria filter**

- **Mild Detergent**
A.2 Acceptable Test Equipment

A.2.1 Digital Manometer

Specifications:

- 0-40 cm H₂O minimum
- ± 1.0% cm H₂O of reading

Acceptable Options:

- Certifier Flow Analyzer, RI p/n 1012598 (High flow module) (see A.3 for details)
- Any commercially available digital manometer that meets the above specifications

A.2.2 Flowmeter

Specifications:

- 0-150 L/min/imum
- ± 1% of reading

Acceptable Options:

- Certifier Flow Analyzer, RI p/n 1012598 (High flow module) (see A.3 for details)
- Any commercially available flowmeter that meets the above specifications

A.2.3 Digital Multimeter

Specifications:

- 3 1/2 digit readout

Acceptable Options:

- Fluke 87 or better model.
- Any commercially available digital multimeter that meets the above specifications
A.2.4 **PC/Laptop**

Acceptable Options:

- Any commercially available PC or laptop with Windows operating system and hyperterminal.

A.2.5 **Mechanical Lung (Adult)**

Specifications:

- Variable Compliance includes 0.05
- Parabolic Resistor value RP-20
- Lung capacity of at least 100L

Acceptable Options:

- Michigan Instruments, Inc. Model 1601 Test Lung
- Any commercially available test lung that meets the above specifications

A.2.6 **Electrical Safety Analyzer**

Specifications:

Earth Resistance

- Range – 0 to 19.99 Ohms
- Resolution – 0.01 Ohms
- Accuracy – ±5%, ±1 digit

Leakage Current

- Range – 0 to 19.99 µA
- Resolution – 1µA
- Accuracy – 2.5 to 1k Hz: ±1%, ± 1 digit
 - 1k Hz to 100 k Hz: ± 1 digit
 - 100 kHz to 1MHz: ± 1 digit

Acceptable Options:

- Dale model 544L
- Any commercially available safety analyzer that meets the above specifications.
A.2.7 Oxygen Analyzer

Specifications:

- Range: 0.0% to 100.0% O₂
- Display Resolution: 0.1% O₂ increments
- Accuracy: ± 2% of full scale

Acceptable Options:

- Certifier Flow Analyzer, RI p/n 1012598 (High flow module) (see A.3 for details)
- MSA Mini OX1 (or better)
- Servomex 570A Oxygen Analyzer
- Any commercially available Oxygen Analyzer that meets the above specifications
A.3. TSI, Inc. Certifier Test System

The Certifier FA Test System manufactured by TSI Inc. and will be distributed worldwide by Respironics Inc. This test system, currently being used by the Respironics mobile technicians, is ideal for biomedical testing applications, including ventilators. The system as configured can measure air, O₂, and nitrous gases. The following are the measurement capabilities of this device:

- Flow
- Peak Flow
- Volume
- Stacked Volume
- Minute Volume
- Inspiratory Time
- I:E Ratio
- Respiratory Rate
- Pressure
- Peak and PEEP Pressure
- Barometric Pressure

This small battery powered unit is ideal for use in the field, in any medical facility or laboratory. It comes equipped with all the filters and connectors to install in-line for testing purposes. There are two versions being offered. The first version is the portable unit with a high flow and O₂ module. This is the version used currently by the Respironics Mobile Technicians for test of the Esprit, Vision and the PLV. The second version includes the high flow and O₂ module but adds a low flow module and is designed to handle low flow and volume measurements when a high degree of accuracy is required. The following is the ordering information for both versions:

P/N 1012598 - Kit, Certifier, High Flow Module
P/N 1012599 - Kit, Certifier, High and Low Flow

These kits can be ordered through Respironics Customer Service.
Appendix B: Schematics

B.1 Schematic Statement ... B-2
B.2 Main Control (MC) .. B-3
B.3 Display Control (DC) ... B-9
B.4 Pressure Control (PC) ... B-20
B.5 Air Flow Module (AFM) .. B-25
B.6 Oxygen Module (OM) .. B-26
B.7 Power Supply ... B-27
B.1 Schematic Statement

Schematics are supplied with this manual in direct support of the sale and purchase of this product.

The schematics are proprietary and confidential. Do not copy the schematics or disclose them to third parties beyond the purpose for which they are intended. Patents are pending.

The schematics are intended to satisfy administrative requirements only. They are not intended to be used for component level testing and repair. Repairs and testing are supported only at the complete board level.

Respironics does not recommend component repair of the BiPAP Vision. The circuit boards in the BiPAP Vision are multilayer boards. Due to the very small trace size, extreme care must be used when replacing components to prevent permanent nonrepairable damage to the circuit board. Components are surface mounted and require special hot air jet soldering and desoldering equipment. Most of the work should be done under a microscope set at 25 times magnification. Use of regular soldering equipment will damage the board and void any applicable warranty.

The schematics are of the revision level in effect at the time that this manual was last revised. Prior revisions may be obtained upon request.
B.3 Display Control (DC)
PCA Pressure Control Board - Bypass-Pullup-ICB Databus
B.7 Power Supply